
Check Your Privilege
(Escalation)
KATE BROUSSARD, SENIOR SECURITY ANALYST AT BISHOP FOX

March 1, 2019

BSidesCMH 2019

22

Kate Broussard

Senior Security Analyst

kbroussard@bishopfox.com

@grazhacks on Twitter

ROADMAP FOR THE NEXT HOUR

Introduction

Outline

• Priv esc definition + framing

• Easy mode

• Sneaky mode

• Boss mode

• Summary

• Resources

PRIVILEGE ESCALATION
AND SO WE BEGIN

4

Definition

• Using privileges of various agents to
gain access to resources

When does it come into play?

Framing

• Who’s doing the execution?

• What are their privileges?

Two ways to escalate:

1. You’re the agent – your current user
permissions are sufficient to execute
the command & do the thing

2. Something else is the agent – you get
something else to execute the
command under THEIR permissions,
which are sufficient to do the thing

DEFINITION AND FRAMING

Privilege Escalation

EASY MODE
SO YOU’RE IN THE SERVER – NOW WHAT?

6

• Who are you?

whoami

id

• Where are you?

pwd

• Are you really really lucky?

cat /etc/shadow vs. cat /etc/passwd

cd /root

CHECK YOUR PRIVILEGE

Before anything else

7

• Where do you have read access?

/home/

/usr/share/

ENV

• Where do you have write access?

/home/USER/.ssh

/root/

/etc/crontab

CHECK YOUR PRIVILEGE

Permissions

8

sudo = super user do [something]

sudo –l

• What commands can you execute?

• Do you need a password?

https://xkcd.com/838/ - Incident

MAKE ME A SANDWICH

sudo

9

sudo = super user do [something]

sudo –l

• What commands can you execute?

• Do you need a password?

MAKE ME A SANDWICH

sudo

cat /etc/sudoers
• if readable, tells you which

users/groups to target
cat /etc/group

• lists users, IDs, group affiliations

10

sudo –l

• User has sudo permissions for python

• Without needing the password – excellent!

• Therefore can run python under root
permissions

sudo python –c ‘import
pty;pty.spawn(“/bin/bash”);’

• New shell spawned by python also
runs under root permissions

SUDO MAKE ME A SANDWICH

sudo Exploit - Python

11

Password reuse is RAMPANT

• web application passwords

• common/default passwords

nmap port scan or ps auf to see what’s up

• known compromised passwords for
specific users

https://xkcd.com/792/ - Password Reuse

WE ARE CREATURES OF HABIT

Credential Reuse

12

• Any passwords entered into history?

• Any interesting files or directories?

cat .bash_history vs history

• .bash_history won’t dump current
session data until session ends

• history is a live dump of session

LEAKED INFORMATION

.bash_history

13

• Are any credentials stored in logs?

• Any other useful information?

Log files/dirs that are writeable can be
replaced by symlink.

When owning process tries to write to log,
will write to symlink instead.

Can be a way to output data somewhere
that you can read it.

LEAKED INFORMATION

/var/log

14

1. Who/where are you

2. What can you see/modify with
current permissions?

3. Look for:

1. sudo permissions

2. Credential Reuse

3. Leaked info from:

1. cat .bash_history

2. /var/log files

Two ways to escalate:

1. You’re the agent – your current user
permissions are sufficient to execute
the command & do the thing

2. Something else is the agent – you get
something else to execute the
command under THEIR permissions,
which are sufficient to do the thing

RECAP

Easy Mode

SNEAKY MODE
FIND AND EXPLOIT SOME MISCONFIGURATIONS

16

• What is the SUID/SGID bit?

• How to find a SUID/SGID binary?

• What runs as the root user?

find / -perm -u=s [-type f] 2>/dev/null

find / -perm -4000 [-type f] 2>/dev/null

• What runs in the root group?

find / -perm -g=s [-type f] 2>/dev/null

find / -perm -2000 [-type f] 2>/dev/null

CHECK THEIR PRIVILEGE

SUID/SGID bits

17

• What are “normal” SUID programs vs
ones that are exploitable?

Standard Linux utility?

Try shell escape or
command option argument

Custom script to make an admin’s life easy?

Try PATH = .
especially if the script makes a call to an alias

Also watch for wildcards

CHECK THEIR PRIVILEGE

SUID/SGID bits

18

Binary Shell escape

less !cmd

more !cmd
:!cmd

vi :! cmd

mysql system cmd
\! cmd

AND MANY MORE

INTENTIONAL OPTION TO EXECUTE COMMANDS

Shell escapes

https://www.mariowiki.com/File:Koopa_Troopa_Artwork_-
_Super_Mario_3D_World.png

19

Binary Option

find -exec CMD \;

awk ‘{system(“CMD”)}’

AND MANY MORE

INTENTIONAL OPTION TO EXECUTE COMMANDS

Cmd option arguments

20

TRICKING AN EXECUTABLE INTO SPAWNING A SHELL

SUID Exploit

Nano is another common executable

If nano has a SUID bit set to root, can
force an escape to root shell

Exploit:
1. create a temporary

file with shell cmd
2. open nano with temp

file set as spell-check
reference

3. run spell-check to
execute cmd under
root permissions

21

Path is an environment variable telling the

OS where to look for an aliased binary

Instead of typing /bin/ls every time,

you can just type ls

Use case: Prank the Admin

• Bill knows that his supervisor Sue has

her PATH = .

• Writes a script to prank her, names it ls,

sticks it in his /home/BILL/ directory

• Asks Sue why ls isn’t working in his ~

• Sue runs ls in /home/BILL/ and executes

the prank script instead of /bin/ls binary

START LOOKING HERE

Path = .

22

Not easy during assessment to know which

users have PATH = .

HOWEVER!

Custom script on the web server might

execute call to aliased program

calling cat $FILE instead of /bin/cat $FILE

If it runs under root privs, you can exploit it

Use case: helperSH Exploit

• helperSH is a custom script on the web

server that makes life easy for an

admin; SUID as root

• Command within the script executes

something recognizable (like ps)

• In writeable dir, make new file

echo “/bin/sh” > ps

• Set own PATH = .

• Execute script from writeable dir

START LOOKING HERE

Path = .

23

Use case: helperSH Exploit

• helperSH is a custom script on the web

server that makes life easy for an

admin; SUID as root

• Command within the script executes

something recognizable (like ps)

• In writeable dir, make new file

echo “/bin/sh” > ps

• Set own PATH = .

• Execute script from writeable dir

START LOOKING HERE

Path = .

24

When using * wildcard, Unix shell
interprets –FILENAME as command option
argument

Meaning you can
submit command options
through file name
when running a wildcard process

Keep an eye out for wildcards in
custom scripts, cron jobs, executables

chown example

files in a given dir include:
.FileRef.php
--reference=.FileRef.php

when root executes the following:
chown –R nobody:nobody *.php

becomes:
chown –R nobody:nobody --reference=.FileRef.php

User:group permissions of .FileRef.php are
mapped onto every file in the directory

COMMAND OPTION ARGUMENTS AS FILENAMES

Wildcards

25

When using * wildcard, Unix shell
interprets –FILENAME as command option
argument

Meaning you can
submit command options
through file name
when running a wildcard process

Keep an eye out for wildcards in
custom scripts, cron jobs, executables

NOTE –
EXPLOIT BELOW DELETES THE FILESYSTEM

cd /tmp

echo “blah” > “-rf /*”

rm *

When rm * gets to –rf /* file, command
becomes rm –rf /*

Which recursively deletes everything on
the filesystem, starting at /

COMMAND OPTION ARGUMENTS AS FILENAMES

Wildcards

26

SUID/SGID bits

1. Shell escapes

2. Cmd option arguments

3. PATH = .

Wildcards

Two ways to escalate:

1. You’re the agent – your current user
permissions are sufficient to execute
the command & do the thing

2. Something else is the agent – you get
something else to execute the
command under THEIR permissions,
which are sufficient to do the thing

RECAP

Sneaky Mode

BOSS MODE
THESE WILL TAKE SOME TIME TO GET RIGHT

28

Cron jobs are cmds executed on a schedule

Almost always run under root permissions

• /etc/cron.allow & /etc/cron.deny specify user privs

Cron takes a file; file tells it what to execute
and when

• /etc/crontab

Related: at, batch (one-time execution)

PRIVILEGE IS A CRONIC PROBLEM

cron

• How to exploit?

1. Overwrite /etc/crontab

2. Write to a cron dir (priv misconfig)

3. If the what is vulnerable, might be able to
modify or hit something downstream

4. Cron jobs may also have exploitable
wildcards

29

PRIVILEGE IS A CRONIC PROBLEM

cron

• How to exploit?

1. Overwrite /etc/crontab (SUID on nano!)

2. Write to a cron dir (priv misconfig)

3. If the what is vulnerable, might be able to
modify or hit something downstream

4. Cron jobs may also have exploitable
wildcards

30

PRIVILEGE IS A CRONIC PROBLEM

cron

• How to exploit?

1. Overwrite /etc/crontab

2. Write to a cron dir (priv misconfig)

3. If the what is vulnerable, might be able to
modify or hit something downstream

4. Cron jobs may also have exploitable
wildcards

31

PRIVILEGE IS A CRONIC PROBLEM

cron

• How to exploit?

1. Overwrite /etc/crontab

2. Write to a cron dir (priv misconfig)

3. If the what is vulnerable, might be able to
modify or hit something downstream

4. Cron jobs may also have exploitable
wildcards

32

Magic bullet: what if we just compromise
the server OS itself??!

Downside: there might be exploits that you
need to grab & compile & debug

NOTE: not-small risk of bricking the server

HOPE YOU LIKE DEBUGGING IN C

Kernel Exploits

LSB_RELEASE -A

UNAME -A

33

Cron jobs

1. /etc/crontab

2. writeable cron dir

3. affect process downstream

Kernel exploits

Two ways to escalate:

1. You’re the agent – your current user
permissions are sufficient to execute
the command & do the thing

2. Something else is the agent – you get
something else to execute the
command under THEIR permissions,
which are sufficient to do the thing

RECAP

Boss Mode

THAT’S ONE IN THE BANK
LET ME SUM UP

35

Typical goal in server:
persistence + privilege escalation

Linux tends to be consistent in its core utilities;
get familiar with what’s there and where it lives,
and spotting vulnerable paths gets a lot easier

• Are you the agent? Drop into a root shell &
give yourself persistence

• Is something else the agent? Need an
intermediate step – get something to help
you out

ONE HOUR IN ONE SLIDE

Summary

• Easy mode

• Who are you?

• Where are you?

• What can you do?

• Sneaky mode

• SUID/SGID bits:
shell escapes, cmd option args, PATH = .

• Wildcards

• Boss mode

• Cron jobs

• Kernel exploits

36

• https://payatu.com/guide-linux-privilege-escalation/

• http://www.securitysift.com/download/
linuxprivchecker.py

• https://exploit-db.com

• https://www.linode.com/docs/tools-reference/linux-users-
and-groups/

• https://resources.infosecinstitute.com/
privilege-escalation-linux-live-examples/

• https://www.hackingarticles.in/exploiting-wildcard-for-
privilege-escalation/

• https://percussiveelbow.github.io/linux-privesc/

I’M REAL FRIENDLY

Resources & Contact

kbroussard@bishopfox.com

@grazhacks on Twitter

SLIDE DECK

http://github.com/
grazhacks/BSidesCMH2019

PRACTICE VM

http://bit.ly/
BSidesCMH2019

Thank You!

Questions?

kbroussard@bishopfox.com
@grazhacks on Twitter

SLIDE DECK
http://github.com/

grazhacks/BSidesCMH2019

PRACTICE VM
http://bit.ly/

BSidesCMH2019

