
Introduction to Linux

Privilege Escalation Methods

KATE BROUSSARD

Senior Security Analyst

February 22, 2019

Introduction
ROADMAP FOR THE NEXT HOUR

• Priv esc definition + Framing

• Easy mode

• Sneaky mode

• Boss mode

• Summary

• Resources

OUTLINE

Senior Security analyst at Bishop Fox

kbroussard@bishopfox.com

Twitter handle: @grazhacks

KATE BROUSSARD

mailto:Kbroussard@bishopfox.com

PRIVILEGE ESCALATION

AND SO WE BEGIN

Definition

• Using privileges of various agents to

gain access to resources

When does it come into play?

Framing

• Who’s doing the execution?

• What are their privileges?

Two ways to escalate:

1. You’re the agent

your current user permissions are

sufficient to execute the command &

do the thing

2. Something else is the agent

you get something else to execute the

command under THEIR permissions,

which are sufficient to do the thing

Privilege Escalation
DEFINITION AND FRAMING

EASY MODE

SO YOU’RE IN THE SERVER – NOW WHAT?

whoami

id
pwd cat /etc/shadow

vs. cat /etc/passwd

cd /root

WHO ARE YOU? WHERE ARE YOU? ARE YOU REALLY REALLY LUCKY?

Before Anything Else
CHECK YOUR PRIVILEGE

• Where do you have read access?

/home/

/usr/share/

ENV

• Where do you have write access?

/home/USER/.ssh

/root/

/etc/crontab

https://www.gq.com/story/netflix-carmen-sandiego-hero-weird

Permission
CHECK YOUR PRIVILEGE

sudo –l

• What commands can you execute?

• Do you need a password?

sudo
MAKE ME A SANDWICH

https://xkcd.com/838/ - Incident

sudo –l

• What commands can you execute?

• Do you need a password?

cat /etc/sudoers

cat /etc/group

sudo
MAKE ME A SANDWICH

sudo Exploit - Python
SUDO MAKE ME A SANDWICH

sudo python –c ‘import pty;

pty.spawn(“/bin/bash”);’

New shell spawned by python also runs

under root permissions

Credential Reuse
WE ARE CREATURES OF HABIT

Password reuse is RAMPANT

• web application passwords

• known compromised passwords

for specific users

• common/default credentials

nmap port scan or ps auf to see what’s up

https://imgs.xkcd.com/comics/password_reuse.png

.bash_history
LEAKED INFORMATION

• Any passwords entered into history?

• Any interesting files or directories?

cat .bash_history vs history

/var/log
LEAKED INFORMATION

• Are any credentials stored in logs?

• Any other useful information?

1. Who/where are you

2. What can you see/modify with

current permissions?

3. Look for:

1. sudo permissions

2. Credential Reuse

3. Leaked info from:

1. cat .bash_history

2. /var/log files

Two ways to escalate:

1. You’re the agent

your current user permissions are

sufficient to execute the command

& do the thing

2. Something else is the agent

you get something else to execute

the command under THEIR

permissions, which are sufficient

to do the thing

Easy Mode
RECAP

SNEAKY MODE

FIND AND EXPLOIT SOME MISCONFIGURATIONS

SUID/SGID bits
CHECK THEIR PRIVILEGE

• What is the SUID/SGID bit?

• How to find a SUID/SGID binary?

• What runs as the root user?

find / -perm -u=s [-type f] 2>/dev/null

find / -perm -4000 [-type f] 2>/dev/null

• What runs in the root group?

find / -perm -g=s [-type f] 2>/dev/null

find / -perm -2000 [-type f] 2>/dev/null

SUID/SGID bits
CHECK THEIR PRIVILEGE

What are “normal” SUID programs vs

ones that are exploitable?

Standard Linux utility?

Try shell escape or command option argument

Custom script to make an admin’s life easy?

Try PATH=. (especially if the script makes a call

to an alias)

Also watch for wildcards

Binary Shell escape

less !cmd

more !cmd

:!cmd

vi :! cmd

mysql system cmd

\! cmd

AND MANY MORE

https://www.mariowiki.com/File:Koopa_Troopa_Artwork_-_Super_Mario_3D_World.png

INTENTIONAL OPTION TO EXECUTE COMMANDS

Shell Escapes

Binary Option

find -exec CMD \;

awk ‘{system(“CMD”)}’

AND MANY MORE

Cmd option arguments
INTENTIONAL OPTION TO

EXECUTE COMMANDS

Exploit:

1. create a temporary file with shell cmd

2. open nano with temp file set as spell-check

reference

3. run spell-check to execute cmd under root

permissions

SUID Exploit
TRICKING AN EXECUTABLE

INTO SPAWNING A SHELL

Path is an environment variable telling the

OS where to look for an aliased binary

Instead of typing /bin/ls every time,

you can just type ls

USE CASE: Prank the Admin

• Bill knows that his supervisor Sue has

her PATH = .

• Writes a script to prank her, names it ls,

sticks it in his /home/BILL/ directory

• Asks Sue why ls isn’t working in his ~

• Sue runs ls in /home/BILL/ and executes

the prank script instead of /bin/ls binary

Path = .
START LOOKING HERE

Custom script on the web server might

execute call to aliased program

calling cat $FILE instead of /bin/cat $FILE

If it runs under root privs, you can exploit it

Path = .
START LOOKING HERE

USE CASE: helperSH Exploit

• helperSH is a custom script on the web

server that makes life easy for an admin;

SUID as root

• Command within the script executes

something recognizable (like ps)

• In writeable dir, make new file

echo “/bin/sh” > ps

• Set own PATH = .

• Execute script from writeable dir

Path = .
START LOOKING HERE

USE CASE: helperSH Exploit

• helperSH is a custom script on the web

server that makes life easy for an admin;

SUID as root

• Command within the script executes

something recognizable (like ps)

• In writeable dir, make new file

echo “/bin/sh” > ps

• Set own PATH = .

• Execute script from writeable dir

When using * wildcard, Unix shell interprets

–FILENAME as command option argument

Meaning you can

submit command options

through file name

when running a wildcard process

Look for wildcards in

custom scripts, cron jobs, executables

Wildcards
COMMAND OPTION ARGUMENTS AS FILENAMES

CHOWN EXAMPLE

files in a given dir include:

.FileRef.php

--reference=.FileRef.php

when root executes the following:

chown –R nobody:nobody *.php

becomes:

chown –R nobody:nobody --reference=.FileRef.php

User:group permissions of .FileRef.php are

mapped onto every file in the directory

When using * wildcard, Unix shell interprets

–FILENAME as command option argument

Meaning you can

submit command options

through file name

when running a wildcard process

Look for wildcards in

custom scripts, cron jobs, executables

Wildcards
COMMAND OPTION ARGUMENTS AS FILENAMES

NOTE

EXPLOIT BELOW DELETES THE FILESYSTEM

cd /tmp

echo “blah” > “-rf /*”

rm *

When rm * gets to –rf /* file, command becomes

rm –rf /*

Which recursively deletes everything on the

filesystem, starting at /

Sneaky Mode

RECAP

Two ways to escalate:

● You’re the agent – your current user

permissions are sufficient to execute the

command & do the thing

● Something else is the agent – you get

something else to execute the command

under THEIR permissions, which are

sufficient to do the thing

SUID/SGID bits

1. Shell escapes

2. Cmd option arguments

3. PATH = .

Wildcards

BOSS MODE

THESE WILL TAKE SOME TIME TO GET

RIGHT

Cron jobs are cmds executed on a schedule

Almost always run under root permissions

• /etc/cron.allow & /etc/cron.deny specify user privs

Cron takes a file; file tells it what to execute

and when

• /etc/crontab

Related: at, batch (one-time execution)

cron
PRIVILEGE IS A CRONIC PROBLEM

How to exploit?

1. Overwrite /etc/crontab

2. Write to a cron dir (priv misconfig)

3. If the what is vulnerable, might be able to

modify or hit something downstream

4. Cron jobs may also have wildcards

cron
PRIVILEGE IS A CRONIC PROBLEM

How to exploit?

1. Overwrite /etc/crontab

2. Write to a cron dir (priv misconfig)

3. If the what is vulnerable, might be able to

modify or hit something downstream

4. Cron jobs may also have wildcards

cron
PRIVILEGE IS A CRONIC PROBLEM

How to exploit?

1. Overwrite /etc/crontab

2. Write to a cron dir (priv misconfig)

3. If the what is vulnerable, might be able to

modify or hit something downstream

4. Cron jobs may also have wildcards

cron
PRIVILEGE IS A CRONIC PROBLEM

How to exploit?

1. Overwrite /etc/crontab

2. Write to a cron dir (priv misconfig)

3. If the what is vulnerable, might be able

to modify or hit something downstream

4. Cron jobs may also have wildcards

Magic bullet: what if we just compromise

the server OS itself??!

Downside: there might be exploits that

you need to grab & compile & debug

NOTE: not-small risk of bricking the

server

Kernel Exploits
HOPE YOU LIKE DEBUGGING IN C

LSB_RELEASE -A

UNAME -A

Boss Mode

RECAP

Two ways to escalate:

● You’re the agent – your current user

permissions are sufficient to execute the

command & do the thing

● Something else is the agent – you get

something else to execute the command

under THEIR permissions, which are

sufficient to do the thing

Cron jobs

1. /etc/crontab

2. writeable cron dir

3. affect process downstream

Kernel exploits

THAT’S ONE IN THE BANK

LET ME SUM UP

Summary

ONE HOUR IN ONE SLIDE

Easy mode

• Who are you?

• Where are you?

• What can you do?

Sneaky mode

• SUID/SGID bits:

shell escapes, cmd option args, PATH = .

• Wildcards

Boss mode

• Cron jobs

• Kernel exploits

Typical goal once in server:

persistence + privilege escalation

• Are you the agent?

Drop into a root shell & give yourself

persistence

• Is something else the agent?

Need an intermediate step – get something

to help you out

Resources & Contact

I’M REAL FRIENDLY

kbroussard@bishopfox.com

@grazhacks on Twitter

SLIDE DECK

PRACTICE VM

• https://payatu.com/guide-linux-privilege-escalation/

• http://www.securitysift.com/download/linuxprivchecker.py

• https://exploit-db.com

• https://www.linode.com/docs/tools-reference/linux-users-and-groups/

• https://resources.infosecinstitute.com/privilege-escalation-linux-live-examples/

• https://www.hackingarticles.in/exploiting-wildcard-for-privilege-escalation/

• https://percussiveelbow.github.io/linux-privesc/

mailto:kbroussard@bishopfox.com
https://payatu.com/guide-linux-privilege-escalation/
http://www.securitysift.com/download/linuxprivchecker.py
https://exploit-db.com/
https://www.linode.com/docs/tools-reference/linux-users-and-groups/
https://resources.infosecinstitute.com/privilege-escalation-linux-live-examples/
https://www.hackingarticles.in/exploiting-wildcard-for-privilege-escalation/
https://percussiveelbow.github.io/linux-privesc/

Thank you!

Questions?

