BISHOP FOX.

Protecting the

Customer-Facing
Website

SSSSSSSS

Protect The Business @ Enable Access

Who am |?

Bishop Fox

Dan Petro

Senior Security Analyst

| Rickmote

Categorizing Attacks

Server Attacks — Compromising the server or
related infrastructure

e Web servers
e Database Servers

 Load Balancers

Client Attacks — Tricking users into performing
malicious actions

37

Common Vulnerabilities

(NOT A COMPLETE LIST)

Server Attacks

Insecure File Upload

* Place malicious file on server

SQL Injection
Command Injection

DDoS — Distributed Denial
of Service

Client Attacks
Cross-site Scripting (XSS)

e Persistent and reflective

Cross-site Request Forgery

e Trick users into making
requests to other sites

INSECURE FILE
UPLOAD

EASY ROAD TO OWNING SERVERS

Webserver Filesystem

DIRECTORY TREE

Serves documents from 1ndex.php
the server webroot .
—articles
“Static” files like JPEGs index.php
are simply sent to the user playing-with-dogs.php

why-dogs-are-great.ph
“Dynamic” files like PHP ymeee Jrest-pp

are interpreted as code —dog-profiles
index.php
cc.php
cC.]pg
renata.php

...what if an attacker could renata.]jpg

place their own PHP file

here? —library |
header. inc

They could execute code on
the vulnerable server!

Vulnerable Ingredients

37

File Upload Functionality — Avatars, documents,
pictures, etc...

Upload to webroot — Some servers upload
directly to S3, a file server, or a segmented file
directory (outside of webroot)

Insufficient Input Validation — File extension
checking for some frameworks, content checking
for others

Result

Code execution
* Rewriting application logic

* Accessing sensitive resources

Uname :Linux gatorl643.hostgator.com 3.2.28 #1 SMP Tue Aug 28 11:59:06 CDT 2012 x86_64 [Google] [milw0rm]
User :1080 (maryhack) Group: 1080 (maryhack)

Php :5.2.17 Safe mode: [phpinfo] Datetime: 2012-10-10 23:19:35

Hdd :12749.16 GB Free: 1961.86 GB (71%)

Cwd /home/maryhack/public_html/testsites/wp-content/uploads/ [home]

[Sec. Info] [Files] [Console] [Sql] [Php] [Safemode] [Stringtools] [Bruteforce] [Network] [Logout] [Self remove]

File manager

B Name Size Modify Owner/Group Permissions
Br.] dir 2012-10-04 18:34: maryhack/maryhack
B[2012] dir 2012-10-02 23:11: maryhack/maryhack
B [woocommerce_uploads] dir 2012-08-27 18:4 maryhack/maryhack
B 404.php 71.31 KB 2012-10-04 18:23: maryhack/maryhack
B Defacement.php 4.37 KB 2012-10-04 12:03: maryhack/maryhack
B ermor_log 155 B 2012-10-04 00:53:45 maryhack/maryhack
B wp-access.php 58.25 KB 2012-10-06 11:42:47 maryhack/maryhack

Read file:

Make file:

Upload flle:

LNEIRRIEE Mo file chosen

SQL INJECTION

DATABASE TAKEOVER

SQL Injection

Confusion of data and code
 Database SQL statements
* User-supplied data

* Hijacks statements, thus database

SELECT * FROM Customers WHERE
Country=°‘QUERY ¢ ;

Vulnerable Queries

Original Code

SELECT * FROM
Customers WHERE
Country=°‘QUERY‘;

Normal Input

America

Resulting Query

SELECT * FROM
Customers WHERE
Country=‘America‘;

Injection Example

CHECK THIS OUT

Original Code

SELECT * FROM
Customers WHERE
Country=°‘QUERY ¢

Injection Input

a‘¢ UNION SELECT x
FROM cc_numbers;—-

Resulting Query

SELECT * FROM
Customers WHERE
Country=‘a‘ or
UNION SELECT * FROM
cc_numbers3—- ¢;

Or Even Worse!

To also take over the webserver:
OUTFILE in MySQL

e Can direct output of a statement to file
* Can possibly write malicious content to webroot

e Just as in Insecure File Upload

XP_CMDSHELL in MSSQL

e Direct terminal commands

 Executed on the webserver

Injection Immunity

Parameterized Queries

Example in PHP

$stmt = $dbh->prepare("INSERT INTO REGISTRY
(name, value) VALUES (:name, :value)'");
$stmt->bindParam(':name', $name);
$stmt->bindParam(':value', $value);

Inputs are not merely inserted

Safely accepted as parameters

CROSS-SITE
SCRIPTING (XSS)

JUST WHEN YOU THOUGHT JAVASCRIPT WAS SAFE

Cross-site Scripting

Another confusion of data and code
This time in HTML

Attacks users, not servers

Allows an attacker to hijack user accounts

Example: (normal use)

www . bank.com/account?name=John

<input type="text" name="state" value=“John'">

Cross-site Scripting

XSS

Reflective XSS Example:

www.bank.com/account?name=a"><script>alert('XSS!')</script>

<input type="text" name="state® value=“a"><script>alert('XSS!')</script>

17

Cross-site Scripting (Fixed)

Escaped Example:

www.bank.com/account?name=a"><script>alert('XsSS!")</
script>

<input type="text" name="state® value=“a" ><
script>jalert('XSS!') < /script>”>

a"><script=alert('Xss!") < /script>

STAYING SAFE

SECURE CODING PRACTICES

Good News!

SECURITY DOESN’T HAVE TO BE EXPENSIVE

Firewalls are nice, but good code is better

All of the previous issues can be avoided with
secure coding practices — not expensive firewalls
or products

Recommendations:

Establish a secure development lifecycle practice
within your organization

Instill a culture of caring for the code (take it
personally!)

Peer review your code, open source it!

Thank youl!

BISHOP FOX.

We’'re Hiring

www.bishopfox.com

contact@bishopfox.com

BISHOP FOX.

http://www.bishopfox.com/
mailto:contact@bishopfox.com

