
Journal of Digital Forensic Practice, 1:19–26, 2006
Copyright © Taylor & Francis Group, LLC
ISSN: 1556-7281 print / 1556-7346 online
DOI: 10.1080/15567280500541421

19

UDFP1556-72811556-7346Journal of Digital Forensic Practice, Vol. 01, No. 01, January 2006: pp. 0–0Journal of Digital Forensic Practice ARTICLE

Digital Evidence: Challenging
the Presumption of Reliability

Challenging the Presumption of ReliabilityE. Van Buskirk and V. T. LiuEric Van Buskirk
2826 N. 43rd Street, Phoenix,
Arizona 85008, USA

Vincent T. Liu
1378 West Maria Lane,
Tempe, Arizona 85284, USA

ABSTRACT There is a general tendency among courts to presume that
forensic software reliably yields accurate digital evidence. As a judicial con-
struct, this presumption is unjustified in that it is not tailored to separate
accurate results from inaccurate ones. The authors illustrate this unfortunate
truth by the presentation of two currently uncorrected weaknesses in popu-
lar computer forensic tools, methods, and assumptions. Some percentage of
these forensic software errors (and ones like them) will necessarily have nega-
tive effects on parties, whether in terms of faulty criminal convictions or
improper civil judgments. The authors argue that the collective value of
these negative effects among parties is far larger than the costs of research
and development required to prevent such negative effects. Under a purely
rational economic approach to the law, this dynamic constitutes an ineffi-
ciency to be corrected through the proper application of rules. The authors
advance two approaches to cure current defects. One is through the proper
application of scientific jurisprudence to questions of digital evidence and
the other is through some combination of certain broad market and social
corrections.

KEYWORDS computer forensics, cybercrime, Daubert, digital evidence, EnCase, Federal
Rules of Evidence, software reliability, source code

Nobody knows how bad the state of software really is.
It’s as if, in constructing a building, all the drywall went up before anyone

looked at what was inside.

—William Guttman1

Eric Van Buskirk is a technical consultant, author, and attorney specializing in information security, com-
puter forensics, and electronic discovery. He is licensed to practice law in Arizona, has a master’s degree in
analytic philosophy, and expects to receive his CISSP certification in March 2006. His writing on electronic
discovery has been cited to the United States Supreme Court. He can be reached at evb@azbar.org.

Vincent T. Liu is a partner at Stach & Liu, a firm providing advanced IT security consulting to the For-
tune 500 and international financial institutions. Vincent formerly worked as a security specialist with Hon-
eywell International, as a consultant with the Ernst & Young Advanced Security Center, and as an analyst at
the National Security Agency. Vincent holds a degree in Computer Science and Engineering from the Uni-
versity of Pennsylvania. He is lead developer for the Metasploit Anti-Forensics project, and a contributor to
the Metasploit Framework. Vincent is a published author and has presented at BlackHat, ToorCon, and
Microsoft BlueHat. He can be reached at mailto:vliu@stachliu.com.

E. Van Buskirk and V. T. Liu 20

INTRODUCTION
Should forensic software2 be entitled to a judicial

presumption of reliability? When, if ever, should
courts compel non-party forensic software vendors to
reveal proprietary source code to party experts in order
to assure a fairer trial? And what does reliability mean
in the context of digital evidence anyway?

These issues have been raised by a recent criminal
prosecution in Florida. In Florida v. Bjorkland,3 the defen-
dant was charged with driving-under-the-influence of
alcohol (DUI). In response, the defendant moved to
exclude evidence of intoxication obtained from the
Intoxilyzer 5000 breath-alcohol analysis computer
(IT5000). Although the defendant advanced several
theories in support of her motion, the broader issue
presented by the case is whether experts should be
entitled to audit software source code to ensure the
reliability of digital evidence.

Bjorkland is captivating because it elicits conflicting
values that directly affect the practice of computer
forensics. Intellectual property rights holders fear that
compelled source code disclosure will encourage com-
petitors to use discovery procedures to conduct indus-
trial espionage. Parties urge that compelled source
code disclosure can be essential to ensuring the admis-
sion of accurate evidence. Courts are concerned that
an order to compel source code disclosure in one case
is likely to foster requests to audit the individual qual-
ity of engineering in, for example, an integrated cir-
cuit, a gate array, luminal, or paint.

The idea that the law would permit parties to com-
pel the disclosure of business-critical trade secrets may
be counterintuitive. However, although state laws
vary, there is no specific federal “trade secret privilege”
that absolutely prohibits the ability of parties to com-
pel disclosure of trade secrets. For example, in Coca-
Cola Bottling Co. v. Coca-Cola Co., under the guise of
preparing its experts, Coca-Cola Bottling Company
successfully moved to compel The Coca-Cola Com-
pany to disclose the secret formula of the Coca-Cola
brand soft drink.4

What may be even more surprising is that non-
parties may be subject to orders to compel disclosure
of proprietary information: Federal Rule of Civil Pro-
cedure 45(a) authorizes non-party discovery in civil
cases,5 whereas Federal Rule of Criminal Procedure
17(c) authorizes it in criminal ones.6 Despite the
potentially wide scope of federal discovery procedures,

orders compelling the disclosure of non-party trade
secrets are a relatively infrequent occurrence.

The purpose of this article is to present and discuss
important legal and technical issues involved in the
effort to ensure the reliability of forensic software and
the accuracy of digital evidence. There is a general ten-
dency among courts to presume—without the benefit of
meaningful assurance—that forensic software can be
trusted to yield accurate digital evidence. As a judicial
construct, this presumption is unjustified in that it is
not tailored to separate accurate results from inaccu-
rate ones. This unfortunate result will be illustrated by
the presentation of two current, but uncorrected,
weaknesses in popular computer forensic tools, meth-
ods, and assumptions.

Some percentage of these software errors (or ones
like them) will necessarily have negative effects on par-
ties, whether in terms of faulty criminal convictions or
improper civil judgments. These costs may be assigned
monetary values. The authors argue that the collective
value of negative effects caused by software defects
among parties is far larger than the costs of research
and development required to prevent such negative
effects.

If there were some sustainable mechanism to force
software developers to bear appropriate research and
development costs, the net gain to society and the sys-
tem of justice would significantly increase. The authors
argue there are indeed two broad mechanisms to pro-
mote social net gains. One such method is through the
proper application of scientific jurisprudence at the
individual case level. However, judges must not bear
sole responsibility for the quality of forensic software.
The authors therefore argue that social policymakers
can significantly increase the accuracy of forensic soft-
ware and digital evidence through some combination
of certain market and social corrections.

THE PRESUMPTION OF RELIABILITY
Courts have a seemingly unflappable faith in the abil-

ity of software to render reliable evidence. Broadly speak-
ing, this “Presumption of Reliability” is well-entrenched
in American law. For example, in Olympic Ins. Co. v.
H. D. Harrison, Inc., the court wrote that digital evidence
had a “prima facie aura of reliability.”7 Likewise, in
United States v. Moore, the court noted that “ordinary
business circumstances . . . suggest trustworthiness. . . .

21 Challenging the Presumption of Reliability

at least where absolutely nothing in the record in any
way implies the lack thereof.”8 Similarly, in California v.
Martinez, the court noted that testimony on the
“acceptability, accuracy, maintenance, and reliability”
of computer software is not prerequisite to admission
of computer records.9 And in Missouri v. Dunn, the
appellate court agreed with the trial court in “conclud-
ing that [such] records were uniquely reliable in that
they were computer-generated rather than the result of
human entries.”10 Although the Presumption of Reli-
ability may have found roots in the context of busi-
ness records, it is by now so pervasive that it should be
recognized to be co-extensive with the law of digital
evidence itself.11

The Presumption of Reliability is difficult to rebut.
Unless specific evidence is offered to show that the
particular code at issue has demonstrable defects12

that are directly relevant to the evidence being offered
up for admission, most courts will faithfully maintain
the Presumption of Reliability. But because most code
is closed source and heavily guarded, a party cannot
audit it to review its quality. At the same time, how-
ever, source code audits are perhaps the best single
way to discover defects.13

This difficulty gives rise to an important question:
if a party cannot gain access to source code without
evidence of a defect, but cannot get evidence of a
defect without access to the source code, how is a
party to rebut the Presumption?14 Rather than wrestle
with, or even acknowledge, this conundrum, most
courts simply presume that all code is reliable without
sufficient analysis.

With only a few exceptions, even if a party does
manage to raise some doubt as to the reliability of par-
ticular code, most courts will still admit into evidence
output from such code, subject only to the caveat that
any reliability concerns should affect the weight of the
evidence, not its admissibility.15 But, given the over-
whelmingly prevalent belief that “machines are
immune to human frailties, desires, and whims that
can lead to erroneous information or misinterpreta-
tion,”16 is this purported compromise of any value?

In many circumstances, it is not:

[T]he reliability of a particular computer system or process
can be difficult to assess. Programmers are fallible and can
unintentionally or purposefully embed errors in their applica-
tions. Also, complex systems can have unforeseen operating
errors, occasionally resulting in data corruption or catastrophic
crashes. Possibly because of these complexities, courts are not

closely examining the reliability of computer systems or pro-
cesses and are evaluating the reliability of digital evidence with-
out considering error rates or uncertainty.17

TWO EXAMPLES
File timestamps are one of the most heavily relied-

upon techniques used by computer forensic examiners
to timeline and identify suspicious behavior. On FAT-
related file systems, timestamps are properties of a file
that are composed of a Last Modified time (M), a Last
Accessed time (A), and a Created time (C). On NTFS
file systems, there is a fourth timestamp called the
Entry Modified (E) time. Timestamps were designed
to be used by the computer operating system for
accounting purposes, but they have been adopted as
an important investigative tool as well.

The M-timestamp is updated when file data changes,
the A-timestamp is updated when the file is accessed,
and the C-timestamp is updated when the file is created
on the file system. On NTFS file systems, MACE times
are stored in two different attributes in the Master File
Table: the Standard Information (SI) attribute and the
File Name (FN) attribute. Again, on NTFS file systems,
the E-timestamp is updated when anything changes to
the MFT record entry, including any modification to
the first three MAC values.

How do timestamps play a critical role in cyber-
investigations? If, for example, a suspicious file is
found to have a creation date of Monday, November
28, 2005, at 3:15 pm, the theory of temporal locality
would suggest that other suspicious files may have
been modified, accessed, or created at or near the
same time. If that is correct, proper investigative tech-
nique should lead the investigator to look for other
files with temporally near timestamps in order to
locate other suspicious files. But proper investigative
techniques work only if computer forensic software
accurately reports file timestamps.

EnCase Forensic Edition (EnCase) is a popular
computer forensic software suite. Guidance Software,
the corporate developer of EnCase, claims that
“[c]omputer evidence recovered with EnCase software
has been admitted into thousands of court proceed-
ings in several countries and jurisdictions.”18 With
such a vast market presence, the reliability of a sub-
stantial amount of digital evidence may be divined by
examining the reliability of evidence yielded by
EnCase.

E. Van Buskirk and V. T. Liu 22

The method by which EnCase analyzes file systems
is easy enough to understand. After acquiring a hard
drive image, EnCase reads the NTFS MFT records in
order to determine all MACE values on the file sys-
tem. In particular, EnCase by default obtains the
MACE values by reading the SI attribute of each file
record within the MFT. MACE values are displayed
within the EnCase interface so that the cyber-investi-
gator can use them to create a timeline of suspicious
activity, and to detect other aberrant data.

If there is any question as to EnCase’s ability to
analyze timestamps properly, then the investigation of
hundreds or thousands of cases could be affected. If,
for example, there were methods by which timestamps
could be undetectably modified, especially in ways
previously unknown to the investigative community
at large, then it might be the case that investigations
were (or will be) aborted, that illegal activity was (or
will be) concealed, or that innocence was (or will be)
feigned. It is thus very important that forensic soft-
ware be highly accurate and that its errors and rates of
occurrence be known.

There have long been programs in existence that
modify timestamp values on FAT-related and NTFS
file systems. Research shows that these programs rely
on the well-documented SetFileTime function call in
the Windows Application Program Interface (API).
However, the SetFileTime call only works undetect-
ably against the M, A, and C (MAC) timestamps; it
does not work on the fourth (E) timestamp. Because
FAT-related file systems store only the first three
timestamp values (i.e., MAC timestamps), traditional
MAC modification programs have long been able to
modify MAC values in ways that can damage an
investigation. This fact should be well known to the
cyber-investigative community.

Still, because MAC modification programs typi-
cally have been thought to modify MAC timestamps
on NTFS file systems, but not the fourth timestamp
(E), traditional computer forensic wisdom has held
that MACE timestamps on NTFS file systems were
generally safe from surreptitious modification
attempts via the SetFileTime call. That is, traditional
thought holds that if an attacker attempts to modify
NTFS timestamps with any tool programmed to use
the SetFileTime function call, such modification will
fail because the E-timestamp will always update to
the exact time that the modification was attempted.
Thus, previous timestamp modification techniques

were easily detectable because the E-timestamp would
fall out-of-sync with the MAC timestamps. That is,
with regard to NTFS file systems, traditional thinking
holds that the temporal disjunction between the MAC
values and the E-value could always be used to indi-
cate the presence of timestamp modification attempts.

However, recently published research19 shows that
by using the undocumented Windows system call,
NtSetInformationFile, instead of the SetFileTime
call, all four timestamps can be undetectably modified
(i.e., fabricated). And this weakness is not limited to
EnCase; it applies to any computer forensic software
that makes use of the Windows API to read file times-
tamps. Not only is the weakness shared by other
forensic software, but it is quite easy to exploit. One
need not even be well-versed in software engineering
to exploit this weakness, as a command line tool that
does it almost effortlessly has already been written and
published on the Internet.20

Additional research shows the existence of another
weakness in the way forensic software such as EnCase
employs the API. In particular, this weakness allows an
attacker to impede the ability of EnCase (and others)
to translate timestamps properly. EnCase and its ilk
rely on the Windows API to convert binary timestamp
values into human readable format. However, exploit
code has been written that can subvert this conver-
sion. Again, using the NtSetInformationFile function
call, file timestamps can be modified so that they are
not translatable into human readable values. Because
EnCase (and others) depend on the Windows API to
translate binary system time values into the human
readable format, an attacker using this technique
could hide all file timestamps from an investigator.

PROBLEMS AND SOLUTIONS
As it currently stands, the Presumption of Reliabil-

ity has two important problems. First, it facilitates the
admission of inaccurate digital evidence. When foren-
sic software lacks independent, thorough, and scien-
tific testing, and when it may have been prematurely
sold to customers in beta form so as to meet quarterly
sales requirements, there is little justifiable basis for
presuming either reliability or unreliability—that is, we
should not presume to know one way or the other.

There is a further problem with the Presumption of
Reliability. By facilitating the admission of inaccurate
results, the Presumption of Reliability is economically

23 Challenging the Presumption of Reliability

inefficient in that it fails to force developers to inter-
nalize costs.21 Instead, costs from code defects are
passed on to parties in the form of faulty criminal
convictions, improper civil judgments, lost opportu-
nity, and the like. If these costs were assigned mone-
tary values, in many cases the failure to correct
various forensic software defects would impose on
society a net loss.

To take a simple example, if the cost to a software
developer (in terms of extra research and develop-
ment) to fix a weakness is $50, but the cost to parties
(in terms of lost property, freedom, or opportunity) of
not fixing the weakness is $100, then the law should
be used so as to force the developer to internalize the
costs to correct the weakness.

Software such as this is economically inefficient, for
it would be much less expensive to fix the defects
rather than to pass them downstream to innocents. In
the case of the two previously discussed API weak-
nesses, the cost to remediate these problems is minute
compared to the downstream costs borne by the
throng. Specifically, small sections of the EnCase code
base could be updated to analyze timestamps with
custom translations functions, so that it would not be
necessary to rely on those built into the Windows API.
Accordingly, forensic software subject to these weak-
nesses (and others like them) should be construed as
economically inefficient.

Judges and social policymakers should use their
powers in order to correct current inefficiencies in
forensic software so as to improve the accuracy of dig-
ital evidence. There is a range of solutions to be con-
sidered, both at the individual case level as well as at
the social policy or market level.

Case Level Improvements
At the level of cases and controversies, judges

should more closely scrutinize digital evidence result-
ing from cyber-investigations. One way of elevating
the foundational requirements for such evidence is to
consider whether the software yielding it has been val-
idated in accordance with the procedures set forth in
Daubert v. Merrell Dow Pharmecuticals.22 Daubert is a
United States Supreme Court decision that considered
the standards under which scientific evidence is admit-
ted. In Daubert, the Court ruled in part that Rule 702
of the Federal Rules of Evidence imposes on trial
judges a special obligation to ensure that scientific evi-

dence is reliable.23 The Court provided a four-part test
to assist in this determination. In assessing reliability,
trial courts applying federal law should consider: (1)
whether the theory or technique has been reliably
tested; (2) whether it has been subjected to peer
review; (3) the known or potential rate of error of the
theory or technique; (4) whether the technique is gen-
erally accepted. The holding of Daubert was subse-
quently extended to technical evidence in Kumho Tire
Co. v. Carmichael.24 Further, a trial court in Texas
applied Daubert-like criteria to EnCase in finding it
“reliable.”25 In so doing, the court implicitly acknowl-
edged that different software and different software
versions qualify as different “theories or techniques.”26

What should proper Daubert testing mean in the
context of forensic software? The independent source
code review of all software is perhaps the single most
revealing method to uncover defects. In many cases,
however, the proprietary nature of source code means
that it is unavailable for such review. In such cases,
unless a court compels source code disclosure, black
box testing—also referred to as zero-knowledge application
review—becomes an indispensable way to validate par-
ticular software scientifically.

Black box testing is a software testing methodology
in which assessors attempt to identify flaws in software
without prior knowledge of the application’s internal
logic. Black box testing has at least two sub-compo-
nents. First is fuzzing, which is the process of attempt-
ing a large range of application inputs in order to
locate unexpected behavior. Second, logic bypassing
involves attempts to subvert the intended operation of
software by attempting inputs the programmer did not
anticipate.

Black box testing is very important for software
reliability assessment. Indeed, it was this form of
testing that was used to discover the API weaknesses
described above. Despite its advantages, however,
black box testing has noteworthy limitations. First,
it is very difficult to perform comprehensive black
box testing because fuzzing is so time intensive.
Second, because many applications are made avail-
able only to selected persons, it is often impossible
to conduct independent research. Thus, it should
be of great concern to the computer forensics com-
munity that there is a growing tendency among
forensic software vendors to refuse to distribute
some of their products to non–law enforcement
personnel.27

E. Van Buskirk and V. T. Liu 24

The publication of computer forensic software
reviews is another crucial way to validate computer
forensic software for purposes of Daubert. To conform
properly to scientific jurisprudence, however, it is
important that reviewers conduct independent and
verifiable accuracy testing in a variety of conditions.
Published results that do not reflect these qualities
should not be used by courts to assay the “reliability”
of forensic software.28

Cross-validation of computer forensic tools is
another important component of software reliability
assessment. Cross-validation involves cross-checking the
results of one software tool against the results of
another; if the results are consistent, increased confi-
dence in the reliability of both tools might be justi-
fied. Although cross-validation is important, it
assumes the baseline tools are themselves reliable. As
illustrated above, it may currently be a mistake to
cross-validate one software tool reliant on the Win-
dows API against another such tool. Although the
National Institute of Standards and Technology has
significantly improved cross-validation baselines for
certain kinds of forensic software tools,29 additional
work and additional funding are needed to expand
these baselines.

Social and Market Level Analysis
Perceived imperfections in the free market, intellec-

tual properly law, and the profession of software and
hardware engineering must be considered in the over-
all effort to improve the reliability of forensic software
and accuracy of digital evidence.

The current free market is perhaps the primary con-
tributor to current inefficiencies. If developers spent
more time testing, significant errors could certainly be
reduced without great cost.

[D]evelopment schedules have been compressed well
beyond the 25% point, design and code reviews have been
reduced or eliminated (effectively eliminating the opportunity
to discover and correct both design and coding errors), testers
have been turned into developers (thus reducing further the
possibility of finding and correcting the more subtle design and
coding failures), and test time has been minimized in the rush
to market. Obviously then, large numbers of software defects
and design oversights are shipped to customers.30

Open source software has been proposed as a way
to alleviate undesirable effects of a free market. Open
source is a term used to describe “the conditions under

which software source code used by computers is
made available to others apart from the developer.”31

Open source software has been offered to improve the
quality of digital evidence because it purportedly
“makes it easier to verify whether or not a vulnerabil-
ity exists that could have allowed the tampering, alter-
ation, corruption, or forgery of information produced
by the software. . . .”32 If society is to continue to
allow developers to use customers as beta-testers,
would it not be a good idea at least to allow indepen-
dent review and testing of the source code?

Although open source has been offered as one way
to improve the quality of forensic software and digital
evidence, it is not yet clear how this would work in
practice. Is the idea to establish open source cross-vali-
dation baselines against which proprietary tools are
measured? If so, it is difficult to construe that offering
as a complete solution: no matter how vast the offer-
ing of open source forensic software, there will likely
always be a set of proprietary, closed source tools that
do not have an open source equivalent. As long as
that is true, the courts and the industry will always be
faced with the challenge of authenticating the output
from such proprietary ware. Secondly, although the
open nature of open source software means source
code can be reviewed,33 it does not follow that such
code will actually be reviewed.34

Next, various industry solutions have been pro-
posed as a way to improve the software development
process. The ISO/IEC TR 15504 software process
assessment standard,35 the Capability Maturity
Model,36 Harlan Mills’ Cleanroom software develop-
ment process,37 and work by the Sustainable Comput-
ing Consortium,38 have all been proposed as ways to
improve the quality and reliability of software. For
example:

[d]ata from the use of [Harlan Mills’ Cleanroom software
development process] at NASA have shown 25 to 75 percent
reductions in failure rates during testing. Use of Cleanroom also
showed a reduction in rework effort so that only 5 percent of
the fixes took more than an hour, whereas the standard process
caused more than 60 percent of the fixes to take that long.39

Although industry efforts such as these are laud-
able, benefits will accrue only if the standards are
comprehensive and mandatory and if developer
participation is meaningfully monitored.

Professional licensing of software engineers is
another way to improve the quality of software in gen-
eral, as well as forensic software in particular.

25 Challenging the Presumption of Reliability

In the U.S., mandatory licensing has been used as a means
to protect the public from malpractice by those offering ser-
vices directly to the public, such as doctors, lawyers, civil engi-
neers, contractors, day care workers, barbers, and surveyors.
Many licensing advocates argue it would help promote soft-
ware engineering into a profession and would safeguard society
against incompetent engineers.40

To be effective, professional licensing would need
to be free from inappropriate commercial influence.
And as with the industry efforts described above, pro-
fessional licensing standards would need to be prop-
erly developed, implemented, and monitored in order
to be effective.

THE FLORIDA APPROACH
In Bjorkland, the Florida DUI case mentioned at the

outset, the trial court granted the defense motion to
compel disclosure of the IT5000 source code so as to
improve the quality of evidence in that trial.41 Accord-
ingly, the prosecution was ordered to disclose to the
defense expert the IT5000’s firmware source code. The
court ordered disclosure even though the prosecution
did not have possession of it. Unsurprisingly, as of the
date of this article, CMI, Inc., manufacturer of the
IT5000, steadfastly refuses to make the IT5000 source
code available to the prosecution. Without source
code from the IT5000, the prosecution will be unable
to make its case. The prosecution is therefore faced
with the choice of either dismissing the DUI charges
or appealing the ruling.

In spite of the Bjorkland court’s attempt to improve
the accuracy of the digital evidence, there are several
notable problems with compelled source code disclo-
sure. First, compelled disclosure leads to the familiar
slippery slope. For example, based on Bjorkland,
should Florida courts now allow parties to inspect the
hardware instruction sets of radar gun signal process-
ing chips every time a criminal speeding ticket is chal-
lenged? Alternatively, shall murder defendants be
allowed to hold up a trial because the testifying expert
wishes to audit the chemical properties of Hemaglow,
a proprietary blend of luminal?

Second, because of its case-by-case nature, com-
pelled disclosure of source code is repetitive and inef-
ficient. That is, even if the IT5000 firmware source
code passed muster in Bjorkland, a new audit could be
requested each time a defendant were charged with
DUI based on evidence obtained from a breath/

alcohol machine. When this redundancy is extrapo-
lated to tens of thousands of DUI trials nationwide,
the inefficiencies quickly become enormous. Com-
pelled source code disclosure should therefore be con-
sidered only as a last resort in cases where Daubert
validation testing or other social or market corrections
have failed.

CONCLUSION
Software is “unique among complex engineered

products, insofar as we have very little ability to
understand the inherent level of quality in the prod-
uct.”42 This difficulty makes it tempting for courts to
presume that digital evidence is reliable. This pre-
sumption results in the admission of evidence that is
both inaccurate and economically inefficient. Com-
pelled disclosure of non-party source code has
recently been used to improve the quality of digital
evidence. However, the case-by-case nature of this
method is repetitive and costly. Courts can improve
accuracy rates and avoid inefficiency by properly fol-
lowing the strictures of Daubert. Policymakers can help
by implementing appropriate market or social correc-
tions. Neither the application of scientific jurispru-
dence nor corrections to the social or market rules can
guarantee error-free digital evidence—indeed, that is
not the point. The issue is not how to attain perfec-
tion, but rather how to use the law to inject efficiency
into a system of justice that is not sufficiently skeptical
of that which is offered up as proof.

NOTES
1. Alorie Gilbert, Newsmaker: Fixing the Sorry State of Software, CNET

News, Oct. 9, 2002 (interviewing William Guttman, Director, CyLab
Sustainable Computing Consortium, Carnegie Mellon University), at
http://news.com.com/2008-1082-961370.html.

2. “Software” as used in this article includes traditional software
instruction sets, as well as those found in firmware, and hardware.

3. Florida v. Bjorkland, No. 2004 CT 014406 SC (Sarasota County,
2005).

4. Coca-Cola Bottling Co. v. Coca-Cola Co., 107 F.R.D. 288 (D. Del.
1985).

5. See Fed. R. Civ. P. 45, Committee Notes, 1991 Amendment Subdi-
vision (a) (“Fourth, Paragraph (a)(1) authorizes the issuance of a
subpoena to compel a non-party to produce evidence independent
of any deposition.”); cf. Fed. R. Civ. P. 26(c)(7) (court may grant
protective order to limit disclosure of trade secrets, but is not
required to do so).

6. Fed. R. Crim. P. 17(c)(1). See, e.g., United States v. Iozia, 13 F.R.D.
335, 338 (E.D.N.Y. 1952); see also C. Wright, Federal Practice and
Procedure: Criminal § 274 (1982).

7. Olympic Ins. Co. v. H. D. Harrison, Inc., 418 F.2d 669, 670 (5th Cir.
1969).

E. Van Buskirk and V. T. Liu 26

8. United States v. Moore, 923 F.2d 910, 915 (1st Cir. 1991).
9. California v. Martinez, 990 P.2d 563, 581 (2000).

10. Missouri v. Dunn, 7 S.W.3d 427, 432 (1999).
11. See generally, Williford v. Texas, 127 S.W.3d 309 (2004) (finding

computer forensic software to be reliable); Ohio v. Scurti, 153
Ohio App. 3d 183 (2003) (allowing “expert” testimony on soft-
ware analytical functions by company CEO, although CEO had
only “limited knowledge” of the relevant software); Wisconsin v.
Busch, 576 N.W.2d 904 (1998) (affording presumption of accu-
racy to untested device, where it was composed of hardware that
was “essentially the same” as the device’s predecessor); Lattarulo
v. Georgia, 401 S.E.2d 516, 519 (1991) (holding that “Intoximeter
3000 machine test results are based on accepted scientific theory
or rest upon the laws of nature,” thereby confusing the accuracy
of the general method with the accuracy of a particular instance);
California v. Lugashi, 205 Cal.App. 3d 632 (1988) (presuming dig-
ital evidence to be reliable); New Jersey v. Yerkes, 458 A.2d 1345,
1347 (1983) (finding that where the Breathalyzer 900 has already
been certified for use, the model 900A need not be certified as
well, where differences between the two models “consisted of
[only] the addition of an automatic timing device and the substitu-
tion of a nullmeter for a galvanometer”); see also Fed. R. Evid.
901(b)(9) (providing for the authentication of evidence obtained
through an automated processes or systems); McCormick on Evi-
dence § 294 (John W. Strong et al., eds., 4th ed. 1992) (stating
that with regard to the accuracy of business records, “the courts
have moved in the direction of not imposing rigid requirements.”).

12. There are generally two kinds of software defects: design defects
and coding defects. With design defects, the product works as
designed, but the design is flawed. With coding defects, the code
itself is flawed, and the program does not behave as intended.

13. Erin E. Kenneally, Gatekeeping Out Of The Box: Open Source Soft-
ware As A Mechanism To Assess Reliability For Digital Evidence,
6 Va. J.L. & Tech. 13, ¶ 94 (2001).

14. Kenneally, 6 Va. J.L. & Tech. 13 (2001).
15. United States v. Catabran, 836 F.2d 453, 458 (9th Cir. 1988) (stat-

ing questions “as to the accuracy of [computer] printouts, whether
resulting from incorrect data entry or the operation of the com-
puter program, as with inaccuracies in any other type of business
records, would [affect] only the weight of the printouts, not their
admissibility.”).

16. Keneally, supra note 13, at ¶ 39.
17. Eoghan Casey, Error, Uncertainty, and Loss in Digital Evidence,

1 Int‘l. J. Digital Evidence, Issue 2 (2002), at http://www.ijde.org/
archives/docs/02_summer_art1.pdf.

18. Guidance Software Website, at http://www.guidancesoftware.
com/lawenforcement/ef_index.asp (last visited Nov. 29, 2005).

19. Vincent T. Liu, Presentation at the BlackHat conference (July 28, 2005).
20. Timestomp, at http://www.metasploit.com/projects/antiforensics/.
21. See generally Ronald Coase, The Problem of Social Cost, 3 J.L. &

Econ. 1 (1960).
22. Daubert v. Merrell Dow Pharm., Inc., 43 F.3d 1311 (9th Cir. 1995).

23. Id.
24. Kuhmo Tire Co. v. Carmichael, 526 U.S. 137 (1999).
25. Williford v. Texas, 127 S.W.3d 309 (2004).
26. Id.
27. For example, Guidance Software makes their Field Intelligence

Module available only to law enforcement, military and other gov-
ernment agencies involved in computer forensics. The same is true
for iLook Investigator software.

28. Cf. Williford, 127 S.W.3d 309 (admitting digital evidence based in
part on unscientific product evaluation in a magazine article).

29. Computer Forensic Tool Testing Project, National Institute of Stan-
dard and Technology, at http://www.cftt.nist.gov/.

30. John R. Michener, et al., “Snake-Oil Security Claims”: The System-
atic Misrepresentation Of Product Security In The E-Commerce
Arena, 9 Mich. Telecomm. & Tech. L. Rev. 211, 228 (2003).

31. Erin E. Kenneally, Gatekeeping Out Of The Box: Open Source Soft-
ware As A Mechanism To Assess Reliability For Digital Evidence,
6 Va. J.L. & Tech. 13, ¶ 13 (2001).

32. Id. at ¶ 94.
33. Id. at ¶ 125 (stating “[c]ode under the Open Source model is sub-

ject to falsification. . . .“).
34. See David H. Kaye, On “Falsification” and “Falsifiability”: The First

Daubert Factor and the Philosophy of Science, 45 Jurimetrics J.
473, 478 (2006) (stating that “[t]ypically . . . it is falsification, and
not falsifiability, that matters when it comes to admissibility.”).

35. See http://isospice.com/standard/tr15504.htm.
36. “A Capability Maturity Model is a way of measuring how well

developed management processes are. Organizations that
purchase software can refer to the formal assessment criteria of
the provider to demonstrate the reliability of acquired software.”
Ajoy Ghosh, Presentation at the Incident Response & Forensics
Workshop APEC-Tel 29 (March 21, 2004), at http://
www.apectel29.gov.hk/download/irf_04a.pdf.

37. See for example John Foreman, Cleanroom Software Engineering,
Software Technology Roadmap, 1997, http://www.sei.cmu.edu/
str/descriptions/cleanroom_body.html.

38. The Sustainable Computing Consortium (SSC) was founded at
Carnegie Mellon University (CMU) in May 2002 and became part
of CyLab at CMU in 2004. See http://www.cylab.cmu.edu/
default.aspx?id=2.

39. Barry Boehm & Victor R. Basili, Software Defect Reduction Top 10
List, Computer, Vol. 34, No. 1, Jan. 2001, at 136.

40. Association for Computing Machinery, A Summary of the ACM
Position on Software Engineering as a Licensed Engineering Pro-
fession (July 17, 2000), at http://www.acm.org/serving/se_policy/
selep_main.html.

41. Florida v. Bjorkland, No. 2004 CT 014406 SC (Sarasota County,
2005).

42. Alorie Gilbert, Newsmaker: Fixing the Sorry State of Software,
CNET News, Oct. 9, 2002 (interviewing William Guttman, Director,
CyLab Sustainable Computing Consortium, Carnegie Mellon Uni-
versity), at http://news.com.com/2008-1082-961370.html.

