

K2 Bleeding-Edge Anti-Forensics

Bleeding-Edge Anti-Forensics

Vincent Liu & Francis Brown
Monday - April 3, 2006
1:30PM to 3:30PM

Welcome

Vincent Liu

Managing Director Stach & Liu, LLC vliu@stachliu.com

Francis Brown

Dir of Assessment Stach & Liu, LLC fbrown@stachliu.com

Agenda

Anti-forensics (AF) Background

- AF Attacks & Defenses
 - On-going Q & A
 - Metasploit AF vs. EnCase
- Future Directions

Anti-forensics Background

AF Background

- Computer Forensics
 - "application of the scientific method to digital media in order to **establish** factual information for judicial review" [1]

- Computer Anti-forensics (AF)
 - application of the scientific method to digital media in order to **invalidate** factual information for judicial review

AF Background

- Forensics Process
 - Data Collection
 - Chain of custody, documentation, evidence preservation
 - Data Analysis
 - Automated analysis with tools
 - Manual analysis with experience and training
 - Findings Presentation
 - Oral or written presentation

AF Background

- Forensics Process Weaknesses
 - Data Collection
 - Incomplete data collection, chain-of-custody
 - Data Analysis
 - Inadequate tools, methodology, training
 - Findings Presentation
 - Easy to cast doubt on submitted findings
- Locate & exploit issues in all phases.

AF Quick History

- In the beginning...
 - touch, encryption, renaming
- Then there was...
 - ADS, sdelete, Gutmann delete, Eraser
- Now we're seeing...
 - MAFIA, Defiler's toolkit, FragFS
 - Discussions @ BH, Bellua, HITB, HTCIA,
 CEIC, and more

Why AF?

- Good
 - Validation of forensic tools and techniques
 - Gutmann Method [2]
 - Improve tools (i.e. PGP) [3]
 - Improve process (i.e. JDFP) [4]
 - "Challenging the Presumption of Reliability"
 - Journal of Digital Forensic Practice, 2006
- Bad
 - Exonerate a guilty party by deleting or modifying data
- Ugly
 - Implicate an innocent party by planting data

AF Fundamentals

Assumptions

 (i) Data is evidence, (ii) We trust our tools, and (iii) Our analysts will find everything.

Process

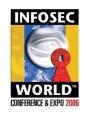
 Understand the process better than the good guys. Theorize about weaknesses. Test the theory.

Attack

 Attack the (i) data, (ii) the tools, and (ii) the analysts.

AF Fundamentals

Attack the Data


- Contraception, Hiding, Destruction
- Manipulation, Fabrication

Attack the Tools

- Findings gaps in tool coverage.
- Tricking the tool analysis.

Attack the Analyst

- Information is power, and attackers leverage knowledge.
- Attackers need only one place to hide, analysts have to check them all.

Attacks & Defenses

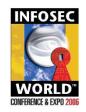
Attacks & Defenses: Type

AF Technique

Discussion and application of the AF technique.

Counter Technique

 Discussion and application of one or more defenses to the AF technique.


Host Protected Areas (HPA)

- OS inaccessible areas on ATA disks for vendors to store data/information.
- Not visible through BIOS.
- Can be abused to hide data.

0 GB 70 GB 80 GB

User Accessible

HPA

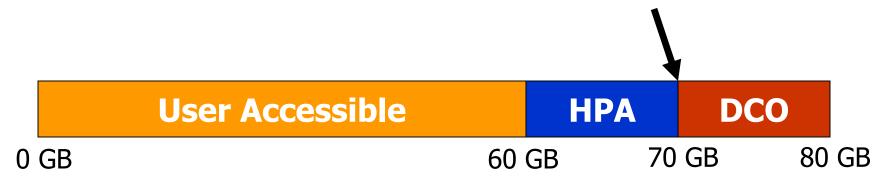
0 GB 70 GB 80 GB

User Accessible

HPA

- Compare IDENTIFY_ADDRESS &
 READ_NATIVE_MAX_ADDRESS •
- Use a tool that detects and acquires the HPA [5]

Use	Don't Use	
EnCase DOS mode w/"Direct ATA"	EnCase in DOS mode w/"BIOS"	
	EnCase Enterprise Edition, EnCase in Windows	



Disk Configuration Overlay (DCO)

- Can be abused like HPA to hide data.
- Limits the visible maximum size from READ_NATIVE_MAX_ADDRESS.

0 GB 60 GB 70 GB 80 GB

User Accessible

HPA

DCO

- Compare READ_NATIVE_MAX_ADDRESS & DEVICE_CONFIGURATION_IDENTIFY
- Use a tool that detects and acquires the DCO [6]

Use	Don't Use
TAFT	Any version of EnCase.
http://www.vidstrom.net/stools/taft/	
Image MASSter Solo2	
http://www.icsforensic.com	

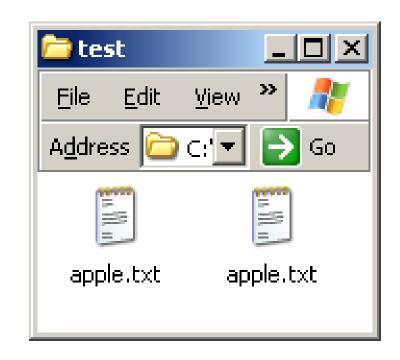
- Self-Monitoring, Analysis and Reporting Tool (SMART)
 - Allows a hard drive to perform self-tests and collect statistical information.
 - Power_On_Hours
 - Power_On_Minutes
 - Power_Cycle_Count
 - Information can be used by an attacker to determine if the system has been powered down to be forensically duplicated [7]
 - Provides an attacker with advanced intelligence.

- No foolproof technique because drive vendors don't follow SMART specifications
- Make a best attempt to minimize changes to the SMART values [7]

Information Overload

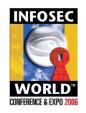
- Forensics takes time. Time is money.
- Make the investigation cost as much as possible (i.e. pick the largest drives, RAID, leave a mess on as many systems as possible)
- Businesses will have to make a judgment call of when to stop analysis and just image and rebuild

- Prioritize systems analysis
- Automate analysis as much as possible



Homographic Attacks [8]

- Substitution of non-Latin letters
- Displayed as a result of Unicode support
- Cyrillic letters a, e, p, y are indistinguishable from the Western counterpart.


Are Russian (Cyrillic) apples different?

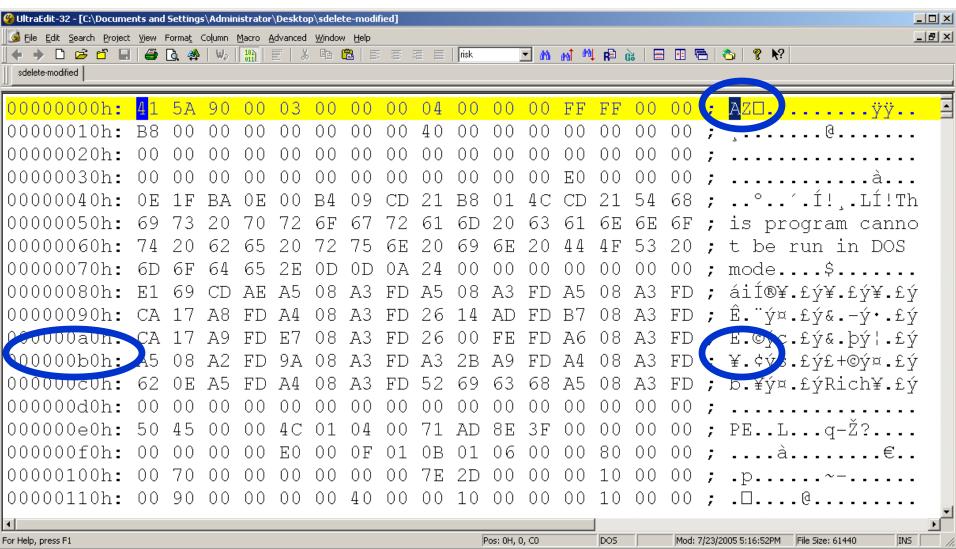
```
apple.txt
```

\x0061 \x0070 \x0070 \x006c \x0065

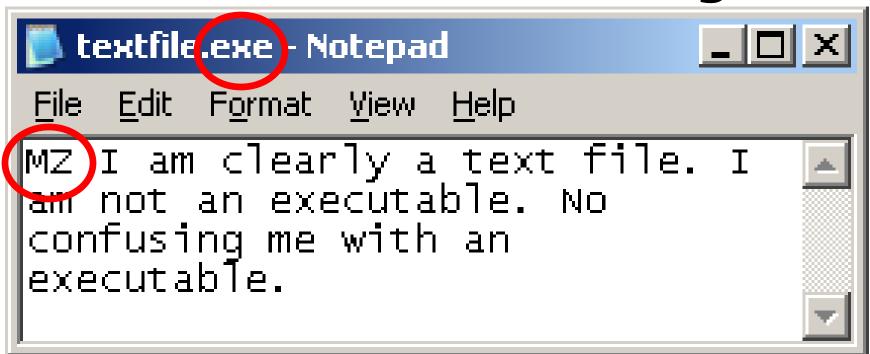
apple.txt

 $\x0430 \x0440 \x0440 \x006c \x0435$

- File signature analysis
- Tools improvements
 - right file (hash)
 - right place (directory)
 - right time (time stamp)
 - highlight characters from different character sets

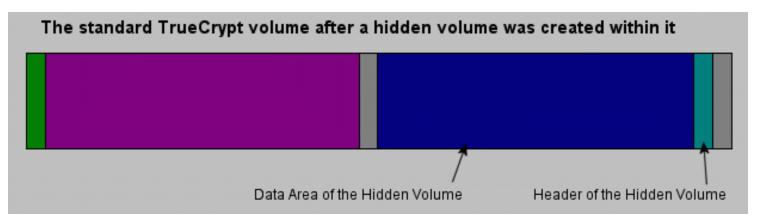

File name modification

- Change file name and extension
 - passwords.txt → avscan.exe
- Most tools use two (2) techniques
 - File extension
 - File signature
- If we know what the tools are looking for, we can change the file signature to meet those requirements
 - Manual method using notepad.exe
 - Automated method using transmogrify.exe



	Name	File Ext	File Typs	Signature
₹ 21	textfile.exe	exe	Windows Executable	Match

- File contents should be analyzed more closely.
- Statistical header analysis.
- Just open the file.



Encrypting Data

- When used correctly, encryption will prevent an examiner from reading your data.
- Protect e-mail, files, folders, volumes, and entire drives
- Commerical quality free tools:
 - TrueCrypt, GnuPG
- Plausible deniability via hidden TrueCrypt volumes [9]

- Brute-force the encryption
- Look for stored passwords elsewhere
- Key logging
- Physical coercion to retrieve key

Steganography

- Hiding information within a file without visibly changing its contents or behavior
- Steghide [10]
 - compression, encryption, checksum
 - JPEG, BMP, mp3, WAV, AU
- Hydan [11]
 - Replaces executable instructions with functional equivalents that encode information
 - encrypted data, file size is unchanged
 - 1 to 110 byte encoding ratio

Original [12]

Extracted

- Stegdetect [13]
 - jsteg, jphide, invisible secrets, outguess, F5, appendX, camouflage
 - Free
- Gargoyle
 - Commercial

Rootkits

- Hide presence on a system and allow for future access
- User-mode & Kernel-mode
 - Kernel mode allows access to all system resources
- Hooking & DKOM
 - Hacker Defender
 - FU
- Persistent & Memory-only
- Advanced Hiding Techniques
 - Hide their own code as well as modifications they make in memory
 - Shadow Walker will intercept memory accesses
- BIOS rootkits
 - ACPI
 - Anywhere there is memory

Counter Technique [14]

- AV Scanning
 - Signature-based detection of known rootkits
- VICE
 - Detects most of today's hooking rookits
 - High false-positive rate
- Klister
 - Leverages redundancy in OS process structures to identify hidden processes via DKOM.
- Rootkit Revealer / Strider GhostBuster
 - Cross-view detection for persistent rootkits based on file system differences.
 - Registry Entries, Processes, Loaded modules (GB)
- SVV
 - Like VICE but compares loaded modules with their disk counterparts
- CoPilot
 - Hardware based solution for high assurance

Hiding in Metadata

- Take advantage of the fact that tools only analyze what they believe contain content. A lot of metadata isn't even visible in tools except in their raw format. Lots of small spaces can add up to a large collective area to store data if it can be managed.
- FragFS [15]
 - Hides data within records of the NTFS Master File Table
- Journaling File Systems [16]
 - Exploits inadequate checking by journaling file systems
- the grugq Research [17]
 - Rune FS stores data in bad blocks
 - Waffen FS stores data in the ext3 journal file
 - KY FS stores data in directory files
 - Data Mule FS stores data in inode reserved space

MFT Entry Header

MFT Attribute

MFT Attribute

MFT Attribute

MFT Slack Space

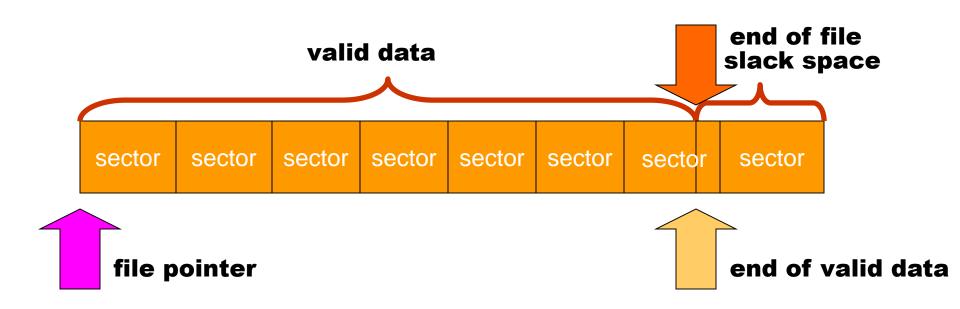
FragFS

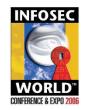
NTFS allocates 1024 bytes per MFT entry.

Usually only a portion is used, leaving plenty of space for storage.

- Detailed analysis of the empty metadata areas as well as the standard content locations
- Closer examination and interpretation of metadata by forensic tools

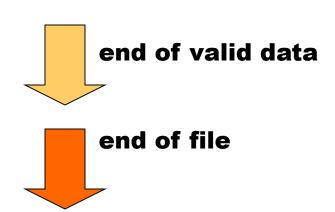
Hiding in File Slack Space


- Hiding data in the space between allocated and actual bytes in a file
- Hidden data usually indistinguishable from old, overwritten files in slack
- Slacker (NTFS/FAT)
 - encryption, intelligent space selection
- Bmap (ext2fs)



standard file setup

1 cluster = 8 sectors



writing to slack

NTFS zeros data
WriteFile()

sector sector sector sector sector sector sector
--

SetFilePointer()
SetEndOfFile()
safe data! 1

1 cluster = 8 sectors

- Strings slack space
- Statistical analysis of slack
- Routinely clear slack space
 - Eraser (heide.ie), PGP Wipe

Attacks & Defenses: Destroy Data

Wiping Tools

- Darik's Boot and Nuke (dban)
 - Gutmann method (1996)
- Commercial Tools
 - PGP Wipe, Evidence Eliminator, and more...
- Free Tools
 - Eraser, sdelete.exe, the defiler's toolkit (TDT)
- Default Features
 - MS Anti-spyware (Track Eraser)

Attacks & Defenses: Destroy Data

Failure Area	Window Washer-1	Window Washer-2	Privacy Expert	Secure Clean	Internet Cleaner	Evidence Eliminator	Cyber Scrub
Incomplete wiping of unallocated space	Unallocated space not overwritten	Unallocated space not overwritten	File fragments remaining in unallocated space	-	File fragments remaining in unallocated space	-	-
Failure to wipe targeted user and system files	Complete failure to wipe data; did not delete Office shortcuts and IE history file	Recursive wiping failed for user- selected files; some IE cache files not removed	Filesystem metadata intact; missed IE cache index, Office shortcuts, Recycle bin index, e-mail	Missed OE e- mail	Did not erase e-mail; failed to wipe IE history files	Missed some application user records; other activity records recoverable from EE temp folder	Missed Office shortcuts
Registry usage records overlooked	Missed "Explorer\ComDl g32" branch of recently used files	Missed "Windows\ ShellNoRoam\ Bags\" data on directory structure	Missed MS Office "save as/MRU" values; and "Explorer\Recent Docs"	Missed "Windows\ ShellNoRoam\ Bags\" data on directory structure	Missed MS Office "save as/MRU" values	Missed "Windows\ ShellNoRoam\ Bags\" data on directory structure	Missed MS Office "save as/MRU" values; and "Explorer\Rece ntDocs"
System Restore points and prefetch folder	Copies of user registry left in Restore directory; wiped files and directory tree referenced in prefetch files	Copies of user registry left in Restore directory; wiped files and directory tree referenced in prefetch files	Copies of user registry left in Restore directory; wiped files and directory tree referenced in prefetch files	Copies of user registry left in Restore directory; wiped files and directory tree referenced in prefetch files	Copies of user registry left in Restore directory; wiped files and directory tree referenced in prefetch files	-	Wiped files and directory tree referenced in prefetch files
Data recoverable from special filesystem structures	Small files, fragments recoverable from MFT, NTFS journal, pagefile	Small files, fragments recoverable from MFT, NTFS journal	Small files, fragments recoverable from MFT, NTFS journal	Small files, fragments recoverable from MFT, NTFS journal	Small files, fragments recoverable from MFT, NTFS journal, pagefile	Small files, fragments recoverable from MFT, NTFS journal	Small files, fragments recoverable from MFT, NTFS journal
Detailed activity logs, configuration files contain sensitive information	Tool stores details about wiping configuration; logs list deleted file names, paths	Tool stores details about wiping configuration	Tool stores details about wiping configuration	Tool stores details about wiping configuration; logs list deleted file names, paths	Tool stores details about wiping configuration	Tool stores details about wiping configuration	Tool stores details about wiping configuration

Evaluating Commercial Counter-Forensic Tools, Matthew Geiger [18]

Attacks & Defenses: Destroy Data

- Enable journaling on NTFS
- Extract NTFS small files
- Analyze missed pieces
- Electron scanning microscope

- Time stamp modification
 - UNIX
 - touch
 - Windows
 - FAT has MAC
 - Many tools exist
 - NTFS has MACE [19]
 - timestomp.exe

	Name	Last Accessed	File Created	Last Written	Entry Modified
<u> </u>	Q329048.log	06/06/05 02:10:21AM	12/02/04 09:45:29AM	12/02/04 09:45:48AM	3/27/05 07:59:44PM
<u> </u>	Q329115.log	07/11/05 04:48:15PM	12/11/04 11:15:20AM	12/11/04 11:15:23AM	03/27/05 07:59:44PM
<u> </u>	Q329170.log	06/06/05 02:10:21AM	12/11/04 11:16:47AM	12/11/04 11:17:58AM	03/27/05 07:59:44PM
<u> </u>	Q329390.log	06/06/05 02:10:21AM	12/11/04 11:15:08AM	12/11/04 11:15:10AM	03/27/05 07:59:44PM
<u> </u>	Q329441.log	06/06/05 02:10:21AM	12/11/04 11:19:15AM	12/11/04 11:20:27AN	03/27/05 07:59:44PM
<u> </u>	Q329834.log	06/06/05 02:10:21AM	12/11/04 11:33:43AM	12/11/04 11:33:48AI	03/27/05 07:59:44PM
<u> </u>	Q329909.log	06/06/0 <mark>7 4 1</mark> 0:21AM	12/02/0 <mark>/</mark> 91-3:07AM	12/02/ 0/ 5:27A 1	03/27/0 <mark>0745</mark> 9:44PM
<u> </u>	Q331953.log	06/06/ 02 0:21AM	12/02/04 3:34AM	12/02/ 4 : 5:55A 1	03/27/0 33-5 9:44PM
<u> </u>	Q810565.log	07/18/05 10:41:34PM	12/11/04 11:22:01AM	12/11/04 11:23:19A	03/27/05 07:59:44PM
<u> </u>	Q810577.log	07/11/05 05:13:54PM	12/11/04 11:29:32AM	12/11/04 11:30:44AN	03/27/05 07:59:44PM
220	Q810833.log	06/06/05 02:10:21AM	12/11/04 11:28:17AM	12/11/04 11:29:29AM	03/27/05 07:59:44PM
221	Q811630.log	07/11/05 09:32:26PM	12/11/04 11:25:51AM	12/11/04 11:26:57AM	03/27/05 07:59:44PM
<u> </u>	Q811789.log	07/11/05 10:39:36PM	12/02/04 09:44:02AM	12/02/04 09:44:19AM	03/27/05 07:59:44PM
223	Q813862.log	06/06/05 02:10:21AM	12/02/04 09:46:57AM	12/02/04 09:47:17AM	03/27/05 07:59:44PM
224	Q814033.log	06/06/05 02:10:21AM	12/11/04 11:23:22AM	12/11/04 11:24:33AM	03,27/05 07:59:445M

modified (M), accessed (A), created (C), entry modified (E)

EnCase

Vs

timestomp.exe

-4		Name	Last Accessed	File Created	Last Written	Entry Modified]
	☐ 62	ODBCINST.INI					
AUT	□ 63	iis5.log					10.00111
	□ 64	comsetup.log					:43:29AM
	☐ 65	imsins.log					
	□ 66	ockodak.log					
	□ 67	ocgen.log					
	□ 68	mmdet.log					
	□ 69	ModemDet.txt					
• a	70	Blue Lace 16.bmp					ዛ")
	□ 71	Soap Bubbles.bmp					
	<u> </u>	Coffee Bean.bmp					1:05:05AM 1
	7 3	FeatherTexture.bmp					linainawii
	□ 74	Gone Fishing.bmp					
	75	Greenstone.bmp					
	□ 76	Prairie Wind.bmp					
• e	□ 77	Rhododendron.bmp					
	78	River Sumida.bmp					
	□ 79	Santa Fe Stucco.bmp					
AUT	□ 80	Zapotec.bmp					
	□ 81	vb.ini					
	□ 82	vbaddin.ini					
	□ 83	COM+.log					
	□ 84	folder.htt					
	□ 85	desktop.ini					

Windows Explorer

Vs

timestomp.exe

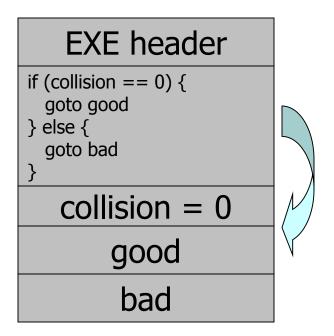
(Demo)

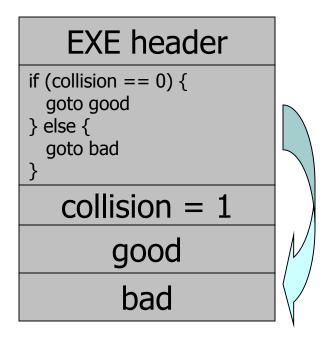
Counter Technique

 Use the secondary MACE values stored in the \$filename (FN) attribute to validate standard MACE values [19]

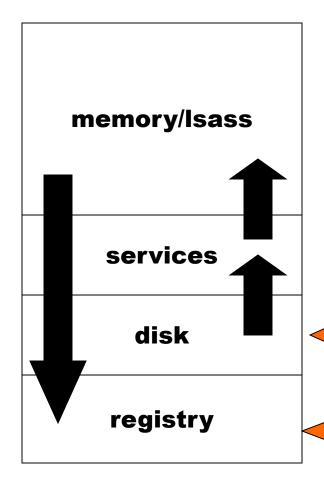
earlier time

later time

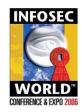

Hash Collisions


- Generating MD4 and MD5 collisions is now in the realm of the personal computer [20]
- What can we make look the same?
 - web pages, executables, etc...
- Can we make a malicious executable hash to the same value as an innocuous executable?

- Bit-by-bit file comparison
- Use trusted hash lists


In-memory Execution

- Prevents data from being written to any persistent storage by executing directly from memory
- Syscall Proxying (Core Impact)
 - Client contains the application logic, but passes system calls to the exploited machine (server)
- MOSDEF (Immunity CANVAS)
 - "Compile" code on the client to send over to the server to arbitrary code can be run
- Meterpreter (Metasploit Framework)
 - Allows loading of arbitrary DLLs to be executed



old techniques (pwdump)

- 1. opens a remote share
- 2. hits disk
- 3. starts a service to do dll injection
- 4. hits registry
- 5. creates remote registry conn
- 6. often fails and doesn't clean up

remote share

remote registry

memory/Isass

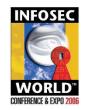
services

disk

registry

Meterpreter + sam juicer

meterpreter channel

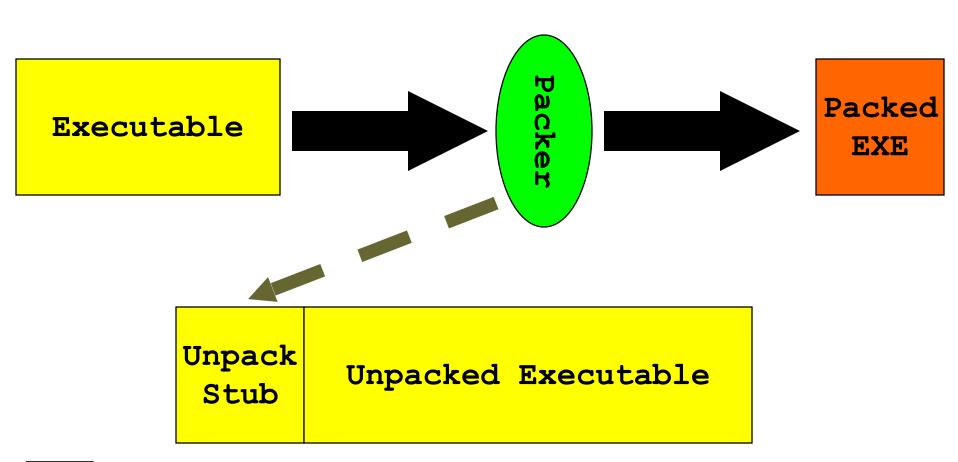

- 1. slides over Meterpreter channel
- 2. direct memory injection
- 3. never hits disk & never hits the registry
- 4. never starts a service
- data flows back over existing connection
- 6. failure doesn't leave evidence

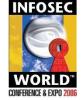
- Active Processes
 - Isof, netstat, dd, ifconfig
- CoPilot
 - Hardware based solution that is installed before system runs
- Memparser, Kntlist, and Windows Memory Forensic Toolkit [21]
 - Processes, strings, environment, list of DLLs, etc...
- IDETECT & gdb
 - Examine collected memory of Linux system
- Use hardware to collect memory instead of software which can be subverted.

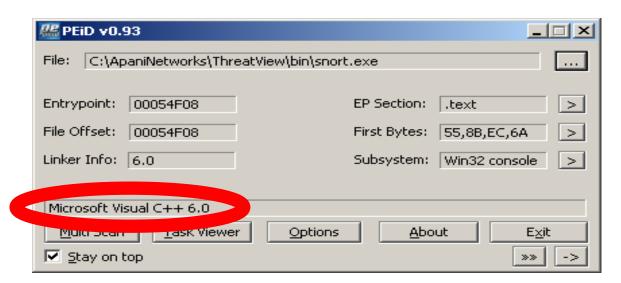
Leave a false trail

- Two questions:
 - How did they get in?
 - How far did they get?
- Answer the question for them.
 - Leave fake evidence.
 - Reduce level of sophistication.

- Follow through the entire investigation
- Utilize as much automation as possible
- Identify inconsistencies within toolkits and skill level.


Packers


- Packers compress and obfuscate executables so they must be reverse engineering.
- Reverse engineering is a highly specialized skill.
- Using a packers isn't.



- Identify with PEiD or RoyalTS
- Common packers have freely available unpackers
- Debugging (OllyDbg with OllyScripts, IDA Pro)
- Dump the process memory and strings

Future Directions

Techniques

- Seeing a combination of techniques especially encryption (i.e. slacker.exe)
- Actively discussing and looking for places to hide, no longer serendipitous.

Availability

- It's no longer the preserve of the expert.
- Everyone's doing it for pennies a day.

Sophistication

- Getting more and more difficult to detect and prevent with current technology.
- Vendors need to improve their tools and techniques.

Thank you for your time.

Questions?

Slides can be found @

http://www.metasploit.com/projects/antiforensics/

Image Citations

- Tree steganography image courtesy of Cyp from Wikimedia Commons
- Cat steganography image courtesy of Cyp from Wikimedia Commons

